Research Journal of Pure Algebra -3(3), 2013, Page: 111-118 Available online through www.rjpa.info

$(\tau_1, \tau_2)^*$ - Q^{*} HOMEOMORPHISM IN BITOPOLOGICAL SPACES

¹P. Padma* & ²S. Udayakumar

¹Department of Mathematics, PRIST University, Kumbakonam, India ²Department of Mathematics, A.V.V.M Sri Pushpam College, Poondi, India

(Received on: 04-03-13; Revised & Accepted on: 18-03-13)

ABSTRACT

A im of this paper is to introduce and study the new type of homeomorphism, namely $(\tau_1, \tau_2)^* - Q^*$ homeomorphism and $\tau_1 \tau_2 - Q^*$ homeomorphism in bitopological spaces. Also we define $(\tau_1, \tau_2)^*$ -irreducible spaces and $\tau_1 \tau_2$ irreducible spaces. Here researchers proved that the set of all $(\tau_1, \tau_2)^* - Q^*$ homeomorphism forms a group.

Keywords: $(\tau_1, \tau_2)^* - Q^*$ homeomorphism, $\tau_1 \tau_2 - Q^*$ homeomorphism, $(\tau_1, \tau_2)^* - irreducible$ spaces and $\tau_1 \tau_2$ -irreducible spaces.

2000 Mathematics Subject Classification: 54E55.

1. INTRODUCTION

The notion of homeomorphism plays a dominant role in topology and so many authors introduced various types of homeomorphisms in topological spaces. In 1995, Maki, Devi and Balachandran [3] introduced the concepts of semi-generalized homeomorphisms and generalized semi-homeomorphisms and studied some semi topological properties. Devi and Balachandran introduced a generalization of α -homeomorphism in 2001.

Recently, P. Padma and S. Udaykumar [8] introduced and studied the concept of $(\tau_1, \tau_2)^*$ - Q* continuous maps in bitopological spaces.

The purpose of this paper is to introduce the concepts of homeomorphisms by using $(\tau_1, \tau_2)^* - Q^*$ open sets. In this paper, we introduce the concepts $\tau_1\tau_2 - Q^*$ homeomorphism, and $(\tau_1, \tau_2)^* - Q^*$ homeomorphism and investigate their basic properties. Also we define and studied the properties of $(\tau_1, \tau_2)^*$ -irreducible spaces and $\tau_1\tau_2$ - irreducible spaces.

The most important property is that the set of all $(\tau_1, \tau_2)^* - Q^*$ homeomorphisms is a group under composition of functions.

2. PRELIMINARIES

Throughout this paper X and Y always represent nonempty bitopological spaces (X, τ_1 , τ_2) and (Y, σ_1 , σ_2). Now we shall require the following known definitions are prerequisites.

Definition 2.1: A subset S of X is called $(\tau_1, \tau_2)^*$ -open if $S \in \tau_1 \cup \tau_2$ and the complement of $(\tau_1, \tau_2)^*$ - open set is $(\tau_1, \tau_2)^*$ - closed.

Definition 2.2: A map f: $X \to Y$ is called $(\tau_1, \tau_2)^* \cdot Q^*$ continuous if the inverse image of each $(\sigma_1, \sigma_2)^* \cdot Q^*$ closed in Y is $\tau_1 \tau_2$ - closed in X.

Definition 2.3 [6]: A map f: X \rightarrow Y is called $\tau_1 \tau_2 \cdot Q^*$ - continuous if the inverse image of each $\sigma_1 \sigma_2 \cdot Q^*$ closed in Y is τ_2 - closed in X.

Definition2.4: A subset S of X is said to be (τ_1, τ_2) *-semi open set if $S \subseteq \tau_1 \tau_2$ cl $(\tau_1 \tau_2 - int (S))$. The complement of $(\tau_1, \tau_2)^*$ - semi open set is $(\tau_1, \tau_2)^*$ - semi closed.

3. $(\tau_1, \tau_2)^*$ - Q^{*} HOMEOMORPHISM

Throughout this paper X and Y always represent nonempty bitopological spaces (X, τ_1 , τ_2) and (Y, σ_1 , σ_2). We denote the family of all (τ_1 , τ_2)* - Q* homeomorphisms from (X, τ_1 , τ_2) onto itself by (τ_1 , τ_2)* - Q* H(X) and the family of all (τ_1 , τ_2)* - closed set in (X, τ_1 , τ_2) is denoted by (τ_1 , τ_2)* - C (X).

Definition 3.1[8]: A bijection f: X \rightarrow Y is called $(\tau_1, \tau_2)^* - Q^*$ homeomorphism, if f is $(\tau_1, \tau_2)^* - Q^*$ continuous and its inverse also $(\tau_1, \tau_2)^* - Q^*$ continuous.

Example 3.1: Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X\}, \tau_2 = \{\phi, X, \{b\}, \{b, c\}\}$ and $\sigma_1 = \{\phi, Y, \{b\}\}, \sigma_2 = \{\phi, Y, \{b\}\}, \{b, c\}\}$. Then ϕ , $\{a\}, \{a, c\}$ are $(\sigma_1, \sigma_2)^*$ - Q^* closed in Y. Let $f: X \to Y$ be the identity map. Then $f(\phi) = \phi$, $f(\{a, c\}) = \{a, c\}, f(\{a\}) = \{a\}$. Since ϕ , $\{a, c\}, \{a\}$ are $\tau_1\tau_2$ - closed in X. Therefore, f and f^{-1} are $(\tau_1, \tau_2)^*$ - Q^* continuous. Hence f is $(\tau_1, \tau_2)^*$ - Q^* homeomorphism.

Definition 3.2: A subset S of X is called **pairwise** $(\tau_1, \tau_2)^*$ - Q^* homeomorphism in X if S is both $(\tau_1, \tau_2)^*$ - Q^* homeomorphism and $(\tau_2, \tau_1)^*$ - Q^* homeomorphism.

Definition 3.3: A space (X, τ_1, τ_2) is called $(\tau_1, \tau_2)^*$ - Q^* space if every $(\tau_1, \tau_2)^*$ - Q^* closed is $(\tau_1, \tau_2)^*$ - closed.

Proposition 3.1: If f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and g: $(Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ are $(\tau_1, \tau_2)^* - Q^*$ homeomorphisms, then $g \circ f: (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is also a $(\tau_1, \tau_2)^* - Q^*$ homeomorphism.

Proof: Let U be a $(\eta_1, \eta_2)^*$ - Q* open set in (Z, η_1, η_2) .

Now $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(V)$, where $V = g^{-1}(U)$.

By hypothesis, V is $(\sigma_1, \sigma_2)^*$ - Q* open in (Y, σ_1, σ_2) and again by hypothesis, $f^{-1}(V)$ is $(\tau_1, \tau_2)^*$ -Q* open in (X, τ_1, τ_2) .

Therefore, $(g^{\circ} f)$ is $(\tau_1, \tau_2)^*$ - Q* continuous.

Also for a $(\tau_1, \tau_2)^*$ - Q*open set G in (X, τ_1, τ_2) ,

We have $(g \circ f)(G) = g(f(G)) = g(W)$, where W = f(G).

By hypothesis,

f (G) is $(\sigma_1, \sigma_2)^*$ - Q* open in (Y σ_1, σ_2) and again by hypothesis, g (W) is $(\eta_1, \eta_2)^*$ -Q* open in (Z, η_1, η_2).

Therefore, $(g \circ f)^{-1}$ is $(\tau_1, \tau_2)^*$ - Q* continuous.

Hence $g \circ f$ is $(\tau_1, \tau_2)^* - Q^*$ homeomorphism.

Example 3.2: Let $X = Y = Z = \{a, b, c\}, \tau_1 = \{\phi, X\}, \tau_2 = \{\phi, X, \{b\}, \{b, c\}\}$ and $\sigma_1 = \{\phi, Y, \{b\}\}, \sigma_2 = \{\phi, Y, \{b\}, \{b, c\}\}, \sigma_1 = \{\phi, Z, \{b, c\}\}, \eta_2 = \{\phi, Z, \{b, c\}\}$. Then ϕ , $\{a\}, \{a, c\}$ are $(\sigma_1, \sigma_2)^*$ - Q^* closed in Y. Let f: $X \to Y$ be the identity map. Then f and g are $(\tau_1, \tau_2)^*$ - Q^* homeomorphism. Here $g \circ f$ is $(\tau_1, \tau_2)^*$ - Q^* continuous, since $\{b, c\}$ is $(\eta_1, \eta_2)^*$ - Q^* open in Z and $(g \circ f)^{-1}(\{b, c\}) = \{b, c\}$ is $(\tau_1, \tau_2)^*$ - Q^* open in (X, τ_1, τ_2) . Hence $g \circ f$ is $(\tau_1, \tau_2)^*$ - Q^* homeomorphism.

Proposition 3.2: The set $(\tau_1, \tau_2)^*$ - Q* H (X) is a group.

Proof: Define Ψ : $(\tau_1, \tau_2)^* - Q^* H(X) \times (\tau_1, \tau_2)^* - Q^* H(X) \rightarrow (\tau_1, \tau_2)^* - Q^*(X)$ by $\Psi(f, g) = (g \circ f)$ for every $f, g \in (\tau_1, \tau_2)^* - Q^* H(X)$.

Then by proposition 3.1, $(g \circ f) \in (\tau_1, \tau_2)^* - Q^*(X)$.

Hence $(\tau_1, \tau_2)^*$ - Q* H (X) is closed.

We know that the composition of maps is associative.

The identity map i: $(X, \tau_1, \tau_2) \rightarrow (X, \tau_1, \tau_2)$ is a $(\tau_1, \tau_2)^* - Q^*$ homeomorphism and $i \in (\tau_1, \tau_2)^* - Q^*H(X)$. Also $i \circ f = f \circ i = f$ for every $f \in (\tau_1, \tau_2)^*$ - Q* H (X).

For any $f \in (\tau_1, \tau_2)^*$ - Q* H (X),

$$\mathbf{f} \circ \mathbf{f}^{-1} = \mathbf{f}^{-1} \circ \mathbf{f} = \mathbf{i}.$$

Hence inverse exists for each element of $(\tau_1, \tau_2)^*$ - Q* H (X).

Thus, $(\tau_1, \tau_2)^*$ - Q* H (X) is a group under composition of maps.

Theorem 3.1: Every $(\tau_1, \tau_2)^* - Q^*$ homeomorphism is a $(\tau_1, \tau_2)^*$ - homeomorphism.

Proof: Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a $(\tau_1, \tau_2)^*$ - Q^{*} homeomorphism.

Then f is bijective and both f and f^{-1} are $(\tau_1, \tau_2)^* - Q^*$ continuous.

Since every $(\tau_1, \tau_2)^*$ - Q* continuous function is $(\tau_1, \tau_2)^*$ continuous we have f and f⁻¹are $(\tau_1, \tau_2)^*$ - continuous.

This shows that f is a $(\tau_1, \tau_2)^*$ - Q^{*} homeomorphism.

Remark 3.1: The converse of the above theorem need not be true, as shown in the following example.

Example 3.3: In example 3.1, f is $(\tau_1, \tau_2)^* - Q^*$ homeomorphism but not $(\tau_1, \tau_2)^*$ - homeomorphism.

Proposition 3.3: If f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and g: $(Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ are $(\tau_1, \tau_2)^* - Q^*$ homeomorphisms, then $g \circ f: (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is also a $(\tau_1, \tau_2)^* - Q^*$ homeomorphism.

Proof: Let U be a $\eta_1 \eta_2$ - Q* open set in (Z, η_1 , η_2).

Now $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(V)$, where $V = g^{-1}(U)$.

By hypothesis, V is $\sigma_1 \sigma_2$ - Q* open in (Y σ_1, σ_2) and again by hypothesis, $f^{-1}(V)$ is $\tau_1 \tau_2$ - Q^{*}open in (X, τ_1, τ_2).

Therefore, $(g^{\circ} f)$ is $\tau_1 \tau_2 - Q^*$ continuous.

Also for a $\tau_1 \tau_2$ - Q^{*}open set G in (X, τ_1 , τ_2),

We have $(g \circ f)(G) = g(f(G)) = g(W)$, where W = f(G).

By hypothesis,

f (G) is $\sigma_1 \sigma_2$ - Q* open in (Y σ_1, σ_2) and again by hypothesis, g (W) is $\eta_1 \eta_2$ - Q* open in (Z, η_1, η_2).

Therefore, $(g \circ f)^{-1}$ is $\tau_1 \tau_2 - Q^*$ continuous.

Hence $g \circ f$ is $(\tau_1, \tau_2)^* - Q^*$ homeomorphism.

Example 3.4: Let $X = Y = Z = \{a, b, c\}, \tau_1 = \{\phi, X\}, \tau_2 = \{\phi, X, \{a\}, \{a, c\}\}$ and $\sigma_1 = \{\phi, Y, \{a\}\}, \sigma_2 = \{\phi, Y, \{a\}, \{a, c\}\}, \eta_1 = \{\phi, Z, \{a\}, \{a, c\}\}, \eta_2 = \{\phi, Z, \{a, c\}\}$. Then ϕ , $\{b, c\}, \{b\}$ are $\sigma_1 \sigma_2 - Q^*$ closed in Y. Let f: $X \rightarrow Y$ be the identity map. Then f and g are $(\tau_1, \tau_2)^* - Q^*$ homeomorphism. Here $g \circ f$ is $\tau_1 \tau_2 - Q^*$ continuous, since $\{a, c\}$ is $\eta_1 \eta_2 - Q^*$ open in Z and $(g \circ f)^{-1}(\{a, c\}) = \{a, c\}$ is $\tau_1 \tau_2 - Q^*$ open in (X, τ_1, τ_2) . Hence $g \circ f$ is $(\tau_1, \tau_2)^* - Q^*$ homeomorphism.

Proposition 3.4: The set $\tau_1 \tau_2 - Q^* H(X, \tau_1, \tau_2)$ is a group.

Proof: Define Ψ : $\tau_1 \tau_2 - Q^*H(X, \tau_1, \tau_2) \times \tau_1 \tau_2 - Q^*H(X, \tau_1, \tau_2) \rightarrow \tau_1 \tau_2 - Q^*H(X, \tau_1, \tau_2)$ by $\Psi(f, g) = (g \circ f)$ for every f, $g \in \tau_1 \tau_2 - Q^*H(X, \tau_1, \tau_2)$.

Then by proposition 3.3, $(g \circ f) \in \tau_1 \tau_2 - Q^* H(X, \tau_1, \tau_2)$.

Hence $\tau_1 \tau_2 - Q^* H(X, \tau_1, \tau_2)$ is closed.

© 2013, RJPA. All Rights Reserved.

We know that the composition of maps is associative.

The identity map

 $i: \ (X,\tau_1,\tau_2) \to (X,\tau_1,\tau_2) \text{ is a } \tau_1 \tau_2 - Q^{\bigstar} \text{ homeomorphism and } i \in \tau_1 \tau_2 - Q^{\And} H(X,\tau_1,\tau_2) \ .$

Also $i \circ f = f \circ i = f$ for every $f \in \tau_1 \tau_2 - Q^* H(X, \tau_1, \tau_2)$.

For any $f \in \tau_1 \tau_2 - Q^* H(X, \tau_1, \tau_2)$,

 $\mathbf{f} \circ \mathbf{f}^{-1} = \mathbf{f}^{-1} \circ \mathbf{f} = \mathbf{i}.$

Hence inverse exists for each element of $\tau_1 \tau_2 - Q^* H(X, \tau_1, \tau_2)$.

Thus, $\tau_1 \tau_2 - Q^* H(X, \tau_1, \tau_2)$ is a group under composition of maps.

Theorem3.2-Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map. Then the following are true.

- i) Every $\tau_1 \tau_2$ Q^{*} homeomorphism is $\tau_1 \tau_2$ homeomorphism.
- ii) Every $(\tau_1, \tau_2)^* Q^*$ homeomorphism is $\tau_1 \tau_2 Q^*$ homeomorphism.

Proof: The proof is obvious.

Definition 3.4: For a subset A of a space (X, τ_1, τ_2) we define the $(\tau_1, \tau_2)^* - Q^*$ kernel of A (briefly, $(\tau_1, \tau_2)^* - Q^*$ ker(A)) as follows: $(\tau_1, \tau_2)^* - Q^*$ ker(A) = \cap {F: F \in $(\tau_1, \tau_2)^* - Q^*$ O (X, τ_1, τ_2) ; A \subset F}. A is said to be a $(\tau_1, \tau_2)^* - Q^*$ - **Aset** in (X, τ_1, τ_2) if A = $(\tau_1, \tau_2)^* - Q^*$ ker(A), or equivalently, if A is the intersection of $(\tau_1, \tau_2)^* - Q^*$ open sets. A is said to be $(\tau_1, \tau_2)^* - Q^* \lambda$ - **closed** in (X, τ_1, τ_2) if it is the intersection of a $(\tau_1, \tau_2)^* - Q^* - \Lambda$ set in (X, τ_1, τ_2) and a quasi closed set in (X, τ_1, τ_2) Clearly, $(\tau_1, \tau_2)^* - Q^* - \Lambda$ set sand $(\tau_1, \tau_2)^* - Q^*$ closed sets are $(\tau_1, \tau_2)^* - Q^* - \lambda$ closed; complements of $(\tau_1, \tau_2)^* - Q^* - \lambda$ closed sets in (X, τ_1, τ_2) are said to be $(\tau_1, \tau_2)^* - Q^* - \lambda$ open in (X, τ_1, τ_2) .

Proposition 3.5: For a subset A of a space (X, τ_1, τ_2) , the following are equivalent: (i) A is $(\tau_1, \tau_2)^* - Q^* - \lambda$ closed in (X, τ_1, τ_2) . (ii) A = L \cap (τ_1, τ_2)* - Q* cl(A), where L is a $(\tau_1, \tau_2)^* - Q^* - \Lambda$ set in (X, τ_1, τ_2) . (iii) A = $(\tau_1, \tau_2)^* - Q^*$ ker(A) \cap (τ_1, τ_2)* - Q* cl(A).

Definition 3.5: A bijection f: $X \rightarrow Y$ is called $(\tau_1, \tau_2)^* - Q^*$ homeomorphism, if f is $(\tau_1, \tau_2)^* - Q^*$ irresolute and its inverse also $(\tau_1, \tau_2)^* - Q^*$ irresolute.

Remark 3.2: We say that spaces (X, τ_1, τ_2) and $(Y \sigma_1, \sigma_2)$ are $(\tau_1, \tau_2)^* - Q^*$ homeomorphic if there exists a $(\tau_1, \tau_2)^* - Q^*$ homeomorphism from (X, τ_1, τ_2) onto (Y, σ_1, σ_2) .

Theorem 3.3: Every $(\tau_1, \tau_2)^* - Q^*$ homeomorphism is a $(\tau_1, \tau_2)^* - Q^*$ homeomorphism.

Proof: Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a $(\tau_1, \tau_2)^* - Q^*$ homeomorphism.

Then f is bijective, $(\tau_1, \tau_2)^* - Q^*$ irresolute and f^{-1} is $(\tau_1, \tau_2)^* - Q^*$ irresolute.

Since every $(\tau_1, \tau_2)^* - Q^*$ irresolute is $(\tau_1, \tau_2)^* - Q^*$ continuous, f and f^{-1} are $(\tau_1, \tau_2)^* - Q^*$ continuous and so f is a $(\tau_1, \tau_2)^* - Q^*$ homeomorphism.

Remark 3.3: The following example shows that the converse of the above theorem need not be true.

Example 3.5: Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ and $\tau_2 = \{\phi, X, \{a\}\}$. Clearly $\{b\}$ is $(\tau_1, \tau_2)^* - Q^*$ closed in X. Let $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y\}$.

Then $\sigma_1\sigma_2$ - open sets on Y are ϕ , Y,{a} and $\sigma_1\sigma_2$ - closed sets on X are ϕ , Y, {b, c}. Since {b, c} is $(\sigma_1, \sigma_2)^* - Q^*$ closed in Y but $f^{-1}(\{b, c\}) = \{b, c\}$ is not $(\tau_1, \tau_2)^* - Q^*$ open in X and so f is not $(\tau_1, \tau_2)^* - Q^*$ irresolute.

Remark 3.4: The above example shows that the concepts of $(\tau_1, \tau_2)^*$ -homeomorphisms and $(\tau_1, \tau_2)^*$ -Q^{*} homeomorphism are independent.

Definition 3.6 -A map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be $(\tau_1, \tau_2)^* - Q^*$ closed if for every $(\tau_1, \tau_2)^* - Q^*$ closed F of X, f (F) is $(\tau_1, \tau_2)^*$ - closed in Y.

Proposition 3.6 - For any bijection f: $X \to Y$, the following statements are equivalent. (a) f^{-1} : $Y \to X$ is $(\tau_1, \tau_2)^* - Q^*$ continuous. (b) f is a $(\tau_1, \tau_2)^* - Q^*$ open map. (c) f is a $(\tau_1, \tau_2)^* - Q^*$ closed map.

Proof:

Step 1: (a) \Rightarrow (b) Let V be a $(\tau_1, \tau_2)^*$ - open set in X.

Then X - V is $(\tau_1, \tau_2)^*$ - closed in X.

Since f^{-1} is $(\tau_1, \tau_2)^*$ - Q* continuous,

 $(f^{-1})^{-1}(X - V) = f(X - V) = Y - f(V)$ is $(\tau_1, \tau_2)^* - Q^*$ closed in Y.

Then f (V) is $(\tau_1, \tau_2)^*$ - Q* open in Y.

Hence f is a $(\tau_1, \tau_2)^*$ - Q* open map.

Step 2: (b) \Rightarrow (c). Let f be a $(\tau_1, \tau_2)^*$ - Q* open map.

Let U be $a(\tau_1, \tau_2)^*$ - closed set in X.

Then X - U is $(\tau_1, \tau_2)^*$ - open in X.

Since f is $(\tau_1, \tau_2)^*$ - Q* open,

f(X - U)=Y - f(U) is $(\tau_1, \tau_2)^*$ - Q* open in Y.

Then f (U) is $(\tau_1, \tau_2)^*$ - Q* closed in Y.

Hence f is a $(\tau_1, \tau_2)^*$ - Q* closed.

Step 3: (c) \Rightarrow (a). Let V be $(\tau_1, \tau_2)^*$ - Q* closed set in X.

Since f: X \rightarrow Y is $(\tau_1, \tau_2)^*$ - Q* closed,

f(V) is $(\tau_1, \tau_2)^*$ - Q* closed in Y.

That is $(f^{-1})^{-1}(V)$ is $(\tau_1, \tau_2)^*$ - Q* closed in Y.

Hence f^{-1} is $(\tau_1, \tau_2)^*$ - Q* continuous.

Proposition 3.7: Let f: $X \rightarrow Y$ be a bijective and $(\tau_1, \tau_2)^* - Q^*$ continuous map. Then the following statements are equivalent. (a) f is a $(\tau_1, \tau_2)^* - Q^*$ open map.

(a) I is a (τ₁, τ₂) * Q spen map.
(b) f is a (τ₁, τ₂)* - Q* homeomorphism.
(c) f is a (τ₁, τ₂)* - Q* closed map.

Proof:

Step 1: (a) \Rightarrow (b). Given f is bijective, $(\tau_1, \tau_2)^* - Q^*$ continuous map and $(\tau_1, \tau_2)^* - Q^*$ open map. Hence f is $(\tau_1, \tau_2)^* - Q^*$ homeomorphism.

Step 2: (b) \Rightarrow (c). Let f be a $(\tau_1, \tau_2)^*$ - Q^{*} homeomorphism. © 2013, RJPA. All Rights Reserved. Hence f is $(\tau_1, \tau_2)^*$ - Q* open.

By Proposition 3.6, f is $(\tau_1, \tau_2)^*$ - Q* closed.

Step 3: (c) \Rightarrow (a)

Follows from Proposition 3.6.

Definition 3.7: Let S be a subset of X. Let $x \in X$. Then x is said to be a $(\tau_1, \tau_2)^*$ - Q* limit point of S if and only if every $(\tau_1, \tau_2)^*$ - Q* open set containing x contains at least one point other than x.

Definition 3.8: Let S be a subset of X. Then the set of all $(\tau_1, \tau_2)^* - Q^*$ limit points of S is said to be $(\tau_1, \tau_2)^* - Q^*$ derived set of S and it is denoted by $(\tau_1, \tau_2)^* - D Q^*$ (S).

Theorem 3.4: Let A be a subset of X. Let $(\tau_1, \tau_2)^*$ - D Q* (A) be the set of all $(\tau_1, \tau_2)^*$ - Q* limit points of A. Then $(\tau_1, \tau_2)^*$ - Q* cl(A) = A $\cup (\tau_1, \tau_2)^*$ - D Q* (A).

Proof: Let $x \in A \cup (\tau_1, \tau_2)^*$ - D Q* (A).

This implies either $x \in A$ or $x \in (\tau_1, \tau_2)^*$ - D Q* (A).

If $x \in A$, then $x \in (\tau_1, \tau_2)^*$ - $Q^* cl(A)$.

If $x \in (\tau_1, \tau_2)^*$ - D Q* (A), then every $(\tau_1, \tau_2)^*$ - Q* open set contains x will intersect with A.

Therefore, $x \in (\tau_1, \tau_2)^*$ - Q* cl(A).

This implies $A\cup (\tau_1,\,\tau_2)^*$ - D Q^* $(A)\subseteq (\tau_1,\,\tau_2)^*$ - Q^* cl(A).

If $x \in (\tau_1, \tau_2)^*$ - Q* cl(A), then to prove $x \in A \cup (\tau_1, \tau_2)^*$ - D Q* (A).

If $x \in A$, then $x \in A \cup (\tau_1, \tau_2)^*$ - D Q* (A).

If $x \notin A$, since $x \in (\tau_1, \tau_2)^* - Q^* cl(A)$ implies every $(\tau_1, \tau_2)^* - Q^*$ open set of x intersects with A.

Hence $x \in (\tau_1, \tau_2)^*$ - D Q* (A).

Therefore, $(\tau_1, \tau_2)^* - Q^* \operatorname{cl}(A) = A \cup (\tau_1, \tau_2)^* - D Q^* (A)$.

Definition 3.9: Let S be a subset of X. Any point of $(\tau_1, \tau_2)^* - Q^*$ cl (S) is referred to as a $(\tau_1, \tau_2)^* - Q^*$ contact (or adherent) point of S.

Definition 3.10 [6]: A bijection f: $X \rightarrow Y$ is called $\tau_1 \tau_2 - Q^*$ homeomorphism, if f is $\tau_1 \tau_2 - Q^*$ continuous and its inverse also $\tau_1 \tau_2 - Q^*$ - continuous.

Example 3.6: In example 3.1, ϕ , {a}, {a, c} are $\sigma_1 \sigma_2 - Q^*$ closed in Y. Let f: X \rightarrow Y be the identity map. Then f (ϕ) = ϕ , f ({a, c}) = {a, c}, f ({a}) = {a}. Since ϕ , {a, c}, {a} are τ_2 - closed in X. Therefore, f and f⁻¹ are $\tau_1 \tau_2 - Q^*$ continuous. Hence f is $\tau_1 \tau_2 - Q^*$ homeomorphism.

Definition 3.11: A bijection f: X \rightarrow Y is called $\tau_1 \tau_2 - Q^*$ homeomorphism, if f is $\tau_1 \tau_2 - Q^*$ irresolute and its inverse also $\tau_1 \tau_2 - Q^*$ irresolute.

Theorem 3.3: Every $\tau_1 \tau_2 - Q^*$ homeomorphism is a $\tau_1 \tau_2 - Q^*$ homeomorphism.

Proof: Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a $\tau_1 \tau_2 - Q^*$ homeomorphism.

Then f is bijective, $\tau_1\tau_2 - Q^*$ irresolute and f^{-1} is $\tau_1\tau_2 - Q^*$ irresolute.

P. Padma* & S. Udayakumar/ $(\tau_1, \tau_2)^*$ - Q^{*} HOMEOMORPHISM IN BITOPOLOGICAL SPACES/ RJPA- 3(3), March-2013.

Since every $\tau_1\tau_2 - Q^*$ irresolute is $\tau_1\tau_2 - Q^*$ continuous, f and f^{-1} are $\tau_1\tau_2 - Q^*$ continuous and so f is a $\tau_1\tau_2 - Q^*$ homeomorphism.

Remark 3.3: The following example shows that the converse of the above theorem need not be true.

Example 3.7: Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{a, c\}\}$ and $\tau_2 = \{\phi, X, \{a\}\}$. Clearly $\{b, c\}$ is $\tau_1 \tau_2 - Q^*$ closed in X. Let $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y\}$. Then $\sigma_1 \sigma_2$ - open sets on Y are ϕ , Y, $\{a\}$ and $\sigma_1 \sigma_2$ - closed sets on X are ϕ , Y, $\{b, c\}$. Since $\{b, c\}$ is $\sigma_1 \sigma_2$ - Q* closed in Y but $f^{-1}(\{b, c\}) = \{b, c\}$ is not $\tau_1 \tau_2$ - Q* open in X and so f is not $\tau_1 \tau_2$ - Q* irresolute.

Remark 3.4: The above example shows that the concepts of $\tau_1 \tau_2$ - homeomorphisms and $\tau_1 \tau_2$ - Q^{*} homeomorphism are independent.

Definition 3.12: A bitopological space (X, τ_1, τ_2) is called $(\tau_1, \tau_2)^*$ - irreducible if X is not empty and whenever $X = A_1 \cup A_2$ with $(\tau_1, \tau_2)^*$ - closed subsets $A_i \in X$ (i = 1, 2) then we have $X = A_1$ or A_2 .

Example: Let $X = \{1, 2, 3\}$ and $\tau_1 = \{\phi, X, \{1\}, \{1, 2\}\}$ and $\tau_2 = \{\phi, X, \{1\}\}$. Then $(\tau_1, \tau_2)^*$ - closed sets are $\phi, X, \{2, 3\}, \{3\}$. Then X is $(\tau_1, \tau_2)^*$ - irreducible.

Theorem: A bitopological space X is $(\tau_1, \tau_2)^*$ -irreducible if and only if every nonempty open set is $(\tau_1, \tau_2)^*$ - Q* open.

Proof: Let X be a $(\tau_1, \tau_2)^*$ - irreducible.

Let U be any nonempty open set.

If U = X then nothing to prove.

Let $U \neq X$.

Then $(\tau_1, \tau_2)^*$ - cl $(U) \neq X$.

Then there exists an $(\tau_1, \tau_2)^*$ - open set V such that $U \cap V = \phi$.

This implies $U^c \cap V^c = X$, where U^c and V^c are proper $(\tau_1, \tau_2)^*$ - closed sets which is a contradiction to the fact that X is $(\tau_1, \tau_2)^*$ - irreducible.

Conversely assume that every $(\tau_1, \tau_2)^*$ - open set is $(\tau_1, \tau_2)^*$ - Q* open.

We claim that X is $(\tau_1, \tau_2)^*$ - irreducible.

Then $X = A \cup B$, where A and B are proper nonempty $(\tau_1, \tau_2)^*$ - closed sets.

 $A^c \cap B^c = \phi.$

Then A^c is not dense.

Then A^c is an $(\tau_1, \tau_2)^*$ - open set but not $(\tau_1, \tau_2)^*$ - Q* open.

Hence X is irreducible.

Definition 3.13: A bitopological space (X, τ_1, τ_2) is called $\tau_i \tau_j$ - irreducible if X is not empty and whenever $X = A_1 \cup A_2$ with τ_i - closed subset $A_1 \in X$ and τ_j - closed subset $A_2 \in X$ (i, j = 1, 2) then we have $X = A_1$ or A_2 .

Example: Let $X = \{1, 2, 3\}$ and $\tau_1 = \{\phi, X, \{1\}, \{1, 3\}\}$ and $\tau_2 = \{\phi, X, \{2\}, \{2, 3\}\}$. Then τ_1 - closed sets are ϕ , X, $\{2, 3\}, \{2\}$ and τ_2 - closed sets are ϕ , X, $\{1, 3\}, \{1\}$. Then X is $\tau_i \tau_j$ -irreducible.

Theorem: A bitopological space X is $\tau_i \tau_{i^-}$ irreducible if and only if every nonempty open set is $\tau_i \tau_{i^-} Q^*$ open.

Proof: Let X be a $\tau_i \tau_{j}$ - irreducible.

Let U be any nonempty τ_{i} - open set.

If U = X then nothing to prove.

Let $U \neq X$.

Then τ_i - cl (U) \neq X.

Then there exists an τ_i - open set V such that $U \cap V = \phi$.

This implies $U^c \cap V^c = X$, where U^c and V^c are proper τ_i - closed set and τ_j -closed set which is a contradiction to the fact that X is $\tau_i \tau_j$ - irreducible.

Conversely assume that every $\tau_i \tau_j$ - open set is $\tau_i \tau_j$ - Q* open.

We claim that X is $\tau_i \tau_{i-1}$ irreducible.

Then $X = A \cup B$, where A and B are proper nonempty τ_i - closed set and τ_i - closed set.

 $A^c \cap B^c = \phi.$

Then A^c is not dense.

Then A^c is an $\tau_i \tau_j$ - open set but not $\tau_i \tau_j$ - Q* open.

Hence X is irreducible.

REFERENCES

- 1. K .Chandrasekhararao and P. Padma, "On Low Bitopological Separation Properties", Bulletin of pure and Applied Sciences, volume 29 E (2010), P. 237 242.
- K. Chandrasekhara Rao and P. Padma, "Strongly minimal generalized boundary, Indian Journal of Applied Research, Volume 1, Issue 7, April 2012, P. 176 - 177.
- 3. R.Devi, K.Balachandran and H. Mahi, "Some generalized homeomorphisms and generalized semi homeomorphisms in topological spaces, Indian J. Pure Appl. Math, 26 (3) (1995), 271 284.
- 4. H. Maki, P. Sundaram and K. Balachandran "On generalized Homeomorphism in topological spaces, Full. Fukuoka Univ. Ed. Part III, 40 (1991), 13 21.
- 5. M.J. Jeyanthi, S. Pious Missier and P. Thangavelu, " Λ_r homeomorphisms and Λ_r^* homeomorphisms", Journal of Mathematical Sciences & Computer Applications 1(2): 48–55, 2011.
- 6. P. Padma and S. Udayakumar " $\tau_1 \tau_2$ Q* continuous maps in bitopological spaces", Asian Journal of Current Engineering and Mathematics, 1: 4 Jul-Aug (2012), 227 229.
- P. Padma and S. Udayakumar "(τ₁, τ₂)* Q* closed sets in bitopological spaces:, International Journal of Mathematical Achieve 3 (7), 2012, 1-7.
- P. Padma and S. Udayakumar, K. Chandrasekhara Rao "(τ₁, τ₂)* Q* continuous maps in bitopological spaces" International Journal of Mathematical Achieve, 3 (8), 2012, 2990 – 2996.
- 9. P. Padma and S. Udayakumar, " $\tau_i \tau_j Q^{**}$ closed sets in bitopological spaces", Research journal of Pure Algebra(Accepted).
- 10. P. Padma and S. Udayakumar, "Pairwise Q* separation axioms in bitopological spaces", International Journal of Mathematical Archive (Appeared).
- 11. P. Padma and S. Udayakumar, K. Chandrasekhararao " $\tau_i \tau_j$ Q^{**} continuous maps in bitopological spaces", preprint.
- 12. O.Ravi, S. Pious Missier and T. SalaiParkunan, "A New Type of Homeomorphism in a Bitopological Space", International Journal of Mathematical Sciences and Applications Vol. 1 No. 2 (May, 2011).

Source of support: Nil, Conflict of interest: None Declared