(τ₁, τ₂)* - Q* HOMEOMORPHISM IN BITOPOLOGICAL SPACES

P. Padma* & S. Udayakumar

Department of Mathematics, PRIST University, Kumbakonam, India
Department of Mathematics, A.V.V.M Sri Pushpam College, Poondi, India

(Received on: 04-03-13; Revised & Accepted on: 18-03-13)

ABSTRACT

The aim of this paper is to introduce and study the new type of homeomorphism, namely (τ₁, τ₂)* - Q* homeomorphism and τ₁τ₂ - Q* homeomorphism in bitopological spaces. Also we define (τ₁, τ₂)* - irreducible spaces and τ₁τ₂ - irreducible spaces. Here researchers proved that the set of all (τ₁, τ₂)* - Q* homeomorphism forms a group.

Keywords: (τ₁, τ₂)* - Q* homeomorphism, τ₁τ₂ - Q* homeomorphism, (τ₁, τ₂)* - irreducible spaces and τ₁τ₂ - irreducible spaces.

2000 Mathematics Subject Classification: 54E55.

1. INTRODUCTION

The notion of homeomorphism plays a dominant role in topology and so many authors introduced various types of homeomorphisms in topological spaces. In 1995, Maki, Devi and Balachandran[3] introduced the concepts of semi-generalized homeomorphisms and generalized semi-homeomorphisms and studied some semi topological properties. Devi and Balachandran introduced a generalization of α-homeomorphism in 2001.

Recently, P. Padma and S. Udayakumar [8] introduced and studied the concept of (τ₁, τ₂)* - Q* continuous maps in bitopological spaces.

The purpose of this paper is to introduce the concepts of homeomorphisms by using (τ₁, τ₂)* - Q* open sets. In this paper, we introduce the concepts τ₁τ₂ - Q* homeomorphism, and (τ₁, τ₂)* - Q* homeomorphism and investigate their basic properties. Also we define and studied the properties of (τ₁, τ₂)* - irreducible spaces and τ₁τ₂ - irreducible spaces.

The most important property is that the set of all (τ₁, τ₂)* - Q* homeomorphisms is a group under composition of functions.

2. PRELIMINARIES

Throughout this paper X and Y always represent nonempty bitopological spaces (X, τ₁, τ₂) and (Y, σ₁, σ₂). Now we shall require the following known definitions are prerequisites.

Definition 2.1: A subset S of X is called (τ₁, τ₂)*-open if S∈τ₁∪τ₂ and the complement of (τ₁, τ₂)* - open set is (τ₁, τ₂)* - semi open set.

Definition 2.2: A map f: X → Y is called (τ₁, τ₂)* - Q* - continuous if the inverse image of each (σ₁, σ₂)* - Q* closed in Y is τ₁τ₂ - closed in X.

Definition 2.3 [6]: A map f: X → Y is called τ₁τ₂ - Q* - continuous if the inverse image of each σ₁σ₂ - Q* closed in Y is τ₂ - closed in X.

Definition 2.4: A subset S of X is said to be (τ₁, τ₂)*-semi open set if S⊆τ₁τ₂ cl (τ₁τ₂ - int (S)). The complement of (τ₁, τ₂)* - semi open set is (τ₁, τ₂)* - semi closed.

Corresponding author: P. Padma
Department of Mathematics, PRIST University, Kumbakonam, India
3. \((\tau_1, \tau_2)^* - Q^*\) HOMEOMORPHISM

Throughout this paper X and Y always represent nonempty bitopological spaces \((X, \tau_1, \tau_2)\) and \((Y, \sigma_1, \sigma_2)\). We denote the family of all \((\tau_1, \tau_2)^* - Q^*\) homeomorphisms from \((X, \tau_1, \tau_2)\) onto itself by \((\tau_1, \tau_2)^* - Q^* H(X)\) and the family of all \((\tau_1, \tau_2)^* - closed set in \((X, \tau_1, \tau_2)\) is denoted by \((\tau_1, \tau_2)^* - C(X)\).

Definition 3.1[8]: A bijection \(f: X \to Y\) is called \((\tau_1, \tau_2)^* - Q^*\) homeomorphism, if \(f\) is \((\tau_1, \tau_2)^* - Q^*\) continuous and its inverse also \((\tau_1, \tau_2)^* - Q^*\) continuous.

Example 3.1: Let \(X = Y = \{a, b, c\}, \tau_1 = \{\emptyset, X\}, \tau_2 = \{\emptyset, X, \{b\}, \{b, c\}\}\) and \(\sigma_1 = \{\emptyset, Y, \{b\}\}, \sigma_2 = \{\emptyset, Y, \{b\}, \{b, c\}\}\). Then \(f, \phi, [a, c]\) are \((\sigma_1, \sigma_2)^* - Q^*\) closed in \(Y\). Let \(f: X \to Y\) be the identity map. Then \(f(\phi) = \phi, f([a, c]) = [a, c], f([a]) = [a]\). Since \(f, \phi, [a, c], [a]\) are \(\tau_1, \tau_2\) - closed in \(X\). Therefore, \(f\) and \(f^{-1}\) are \((\tau_1, \tau_2)^* - Q^*\) continuous. Hence \(f\) is \((\tau_1, \tau_2)^* - Q^*\) homeomorphism.

Definition 3.2: A subset \(S\) of \(X\) is called pairwise \((\tau_1, \tau_2)^* - Q^*\) homeomorphism in \(X\) if \(S\) is both \((\tau_1, \tau_2)^* - Q^*\) homeomorphism and \((\tau_2, \tau_1)^* - Q^*\) homeomorphism.

Definition 3.3: A space \((X, \tau_1, \tau_2)\) is called \((\tau_1, \tau_2)^* - Q^*\) space if every \((\tau_1, \tau_2)^* - Q^*\) closed is \((\tau_1, \tau_2)^* - closed.

Proposition 3.1: If \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)\) and \(g: (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)\) are \((\tau_1, \tau_2)^* - Q^*\) homeomorphisms, then \(g \circ f: (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)\) is also \((\tau_1, \tau_2)^* - Q^*\) homeomorphism.

Proof: Let \(U\) be a \((\eta_1, \eta_2)^* - Q^*\) open set in \((Z, \eta_1, \eta_2)\).

Now \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(V)\), where \(V = g^{-1}(U)\).

By hypothesis, \(V\) is \((\sigma_1, \sigma_2)^* - Q^*\) open in \((Y, \sigma_1, \sigma_2)\) and again by hypothesis, \(f^{-1}(V)\) is \((\tau_1, \tau_2)^* - Q^*\) open in \((X, \tau_1, \tau_2)\).

Therefore, \((g \circ f)^{-1}\) is \((\tau_1, \tau_2)^* - Q^*\) continuous.

Also for a \((\tau_1, \tau_2)^* - Q^*\) open set \(G\) in \((X, \tau_1, \tau_2)\),

We have \((g \circ f)(G) = g(f(G)) = g(W)\), where \(W = f(G)\).

By hypothesis,

\(f(G)\) is \((\sigma_1, \sigma_2)^* - Q^*\) open in \((Y, \sigma_1, \sigma_2)\) and again by hypothesis, \(g(W)\) is \((\eta_1, \eta_2)^* - Q^*\) open in \((Z, \eta_1, \eta_2)\).

Therefore, \((g \circ f)^{-1}\) is \((\tau_1, \tau_2)^* - Q^*\) continuous.

Hence \(g \circ f\) is \((\tau_1, \tau_2)^* - Q^*\) homeomorphism.

Example 3.2: Let \(X = Y = Z = \{a, b, c\}, \tau_1 = \{\emptyset, X\}, \tau_2 = \{\emptyset, X, \{b\}, \{b, c\}\}\) and \(\sigma_1 = \{\emptyset, Y, \{b\}\}, \sigma_2 = \{\emptyset, Y, \{b\}, \{b, c\}\}\). Then \(\phi, [a, c]\) are \((\sigma_1, \sigma_2)^* - Q^*\) closed in \(Y\). Let \(f: X \to Y\) be the identity map. Then \(f\) and \(g\) are \((\tau_1, \tau_2)^* - Q^*\) homeomorphic. Here \(g \circ f\) is \((\tau_1, \tau_2)^* - Q^*\) continuous, since \([b, c]\) is \((\eta_1, \eta_2)^* - Q^*\) open in \(Z\) and \((g \circ f)^{-1}([b, c]) = \{b, c\}\) is \((\tau_1, \tau_2)^* - Q^*\) open in \((X, \tau_1, \tau_2)\). Hence \(g \circ f\) is \((\tau_1, \tau_2)^* - Q^*\) homeomorphism.

Proposition 3.2: The set \((\tau_1, \tau_2)^* - Q^* H(X)\) is a group.

Proof: Define \(\Psi: (\tau_1, \tau_2)^* - Q^* H(X) \times (\tau_1, \tau_2)^* - Q^* H(X) \to (\tau_1, \tau_2)^* - Q^* H(X)\) by \(\Psi(f, g) = (g \circ f)\) for every \(f, g \in (\tau_1, \tau_2)^* - Q^* H(X)\).

Then by proposition 3.1, \((g \circ f) \in (\tau_1, \tau_2)^* - Q^* (X)\).

Hence \((\tau_1, \tau_2)^* - Q^* H(X)\) is closed.

We know that the composition of maps is associative.

The identity map \(i: (\tau_1, \tau_2)^* - Q^* H(X) \to (\tau_1, \tau_2)^* - Q^* H(X)\) is a \((\tau_1, \tau_2)^* - Q^* H(X)\).

Also \(i \circ i = f \circ f = f\) for every \(f \in (\tau_1, \tau_2)^* - Q^* H(X)\).

© 2013, RIPA. All Rights Reserved. 112
For any \(f \in (\tau_1, \tau_2)^* - Q^* H(X) \),
\[f \circ f^{-1} = f^{-1} \circ f = i. \]

Hence inverse exists for each element of \((\tau_1, \tau_2)^* - Q^* H(X)\).

Thus, \((\tau_1, \tau_2)^* - Q^* H(X)\) is a group under composition of maps.

Theorem 3.1: Every \((\tau_1, \tau_2)^* - Q^* \) homeomorphism is a \((\tau_1, \tau_2)^* - \) homeomorphism.

Proof: Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be a \((\tau_1, \tau_2)^* - Q^* \) homeomorphism.

Then \(f \) is bijective and both \(f \) and \(f^{-1} \) are \((\tau_1, \tau_2)^* - Q^* \) continuous.

Since every \((\tau_1, \tau_2)^* - Q^* \) continuous function is \((\tau_1, \tau_2)^* \) continuous we have \(f \) and \(f^{-1} \) are \((\tau_1, \tau_2)^* - \) continuous.

This shows that \(f \) is a \((\tau_1, \tau_2)^* - \) homeomorphism.

Remark 3.1: The converse of the above theorem need not be true, as shown in the following example.

Example 3.3: In example 3.1, \(f \) is \((\tau_1, \tau_2)^* - Q^* \) homeomorphism but not \((\tau_1, \tau_2)^* - \) homeomorphism.

Proposition 3.3: If \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) and \(g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2) \) are \((\tau_1, \tau_2)^* - Q^* \) homeomorphisms, then \(g \circ f: (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2) \) is also a \((\tau_1, \tau_2)^* - Q^* \) homeomorphism.

Proof: Let \(U \) be a \(\eta_1, \eta_2 - Q^* \) open set in \((Z, \eta_1, \eta_2)\).

Now \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(V) \), where \(V = g^{-1}(U) \).

By hypothesis, \(V \) is \(\sigma_1, \sigma_2 - Q^* \) open in \((Y, \sigma_1, \sigma_2)\) and again by hypothesis, \(f^{-1}(V) \) is \(\tau_1, \tau_2 - Q^* \) open in \((X, \tau_1, \tau_2)\).

Therefore, \((g \circ f) \) is \(\tau_1, \tau_2 - Q^* \) continuous.

Also for a \(\tau_1, \tau_2 - Q^* \) open set \(G \) in \((X, \tau_1, \tau_2)\),
we have \((g \circ f)(G) = g(f(G)) = g(W) \), where \(W = f(G) \).

By hypothesis,
\(f(G) \) is \(\sigma_1, \sigma_2 - Q^* \) open in \((Y, \sigma_1, \sigma_2)\) and again by hypothesis, \(g(W) \) is \(\eta_1, \eta_2 - Q^* \) open in \((Z, \eta_1, \eta_2)\).

Therefore, \((g \circ f)^{-1} \) is \(\tau_1, \tau_2 - Q^* \) continuous.

Hence \(g \circ f \) is \(\tau_1, \tau_2 - Q^* \) homeomorphism.

Example 3.4: Let \(X = Y = Z = \{a, b, c\}, \tau_1 = \{\phi, X\}, \tau_2 = \{\phi, X, \{a\}, \{a, c\}\} \) and \(\sigma_1 = \{\phi, Y, \{a\}\}, \sigma_2 = \{\phi, Y, \{a, a, c\}\}, \eta_1 = \{\phi, Z, \{a\}, \{a, c\}\}, \eta_2 = \{\phi, Z, \{a, c\}\} \).

Then \(\phi \) is \(\tau_1, \tau_2 - Q^* \) closed in \(Y \). Let \(f: X \rightarrow Y \) be the identity map. Then \(f \) and \(g \) are \(\tau_1, \tau_2 - Q^* \) homeomorphism . Here \(g \circ f \) is \(\tau_1, \tau_2 - Q^* \) continuous, since \(\{a, c\} \) is \(\eta_1, \eta_2 - Q^* \) open in \(Z \) and \((g \circ f)^{-1}(\{a, c\}) = \{a, c\} \) is \(\tau_1, \tau_2 - Q^* \) open in \((X, \tau_1, \tau_2)\). Hence \(g \circ f \) is \(\tau_1, \tau_2 - Q^* \) homeomorphism.

Proposition 3.4: The set \(\tau_1, \tau_2 - Q^* H(X, \tau_1, \tau_2) \) is a group.

Proof: Define \(\Psi: \tau_1, \tau_2 - Q^* H(X, \tau_1, \tau_2) \times \tau_1, \tau_2 - Q^* H(X, \tau_1, \tau_2) \rightarrow \tau_1, \tau_2 - Q^* H(X, \tau_1, \tau_2) \) by \(\Psi(f, g) = (g \circ f) \) for every \(f, g \in \tau_1, \tau_2 - Q^* H(X, \tau_1, \tau_2) \).

Then by proposition 3.3, \((g \circ f) \in \tau_1, \tau_2 - Q^* H(X, \tau_1, \tau_2) \).

Hence \(\tau_1, \tau_2 - Q^* H(X, \tau_1, \tau_2) \) is closed.

We know that the composition of maps is associative.
The identity map
\[i: (X, \tau_1, \tau_2) \rightarrow (X, \tau_1, \tau_2) \] is a \(\tau_1 \tau_2 \)-\(Q^* \) homeomorphism and \(i \in \tau_1 \tau_2 \)-\(Q^* \)H(X, \tau_1, \tau_2) .

Also \(i \circ f = f \circ i = f \) for every \(f \in \tau_1 \tau_2 \)-\(Q^* \)H(X, \tau_1, \tau_2).

For any \(f \in \tau_1 \tau_2 \)-\(Q^* \)H(X, \tau_1, \tau_2),
\[f \circ i = f^{-1} \circ f = i. \]

Hence inverse exists for each element of \(\tau_1 \tau_2 \)-\(Q^* \)H(X, \tau_1, \tau_2).

Thus, \(\tau_1 \tau_2 \)-\(Q^* \)H(X, \tau_1, \tau_2) is a group under composition of maps.

Theorem 3.2 - Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be a map. Then the following are true.

i) Every \(\tau_1 \tau_2 \)-\(Q^* \) homeomorphism is \(\tau_1 \tau_2 \)-homeomorphism.

ii) Every \((\tau_1, \tau_2)^* \)-\(Q^* \) homeomorphism is \(\tau_1 \tau_2 \)-\(Q^* \) homeomorphism.

Proof: The proof is obvious.

Definition 3.4: For a subset \(A \) of a space \((X, \tau_1, \tau_2) \) we define the \((\tau_1, \tau_2)^* \)-\(Q^* \) kernel of \(A \) (briefly, \((\tau_1, \tau_2)^* \)-\(Q^* \) ker(A)) as follows: \((\tau_1, \tau_2)^* \)-\(Q^* \) ker(A) = \(\cap \{ F: F \in (\tau_1, \tau_2)^* \}-\(Q^* \) O(X, \tau_1, \tau_2); A \subset F \}. \) \(A \) is said to be a \((\tau_1, \tau_2)^* \)-\(Q^* \) set in \((X, \tau_1, \tau_2) \) if \(A = (\tau_1, \tau_2)^* \)-\(Q^* \) ker(A), or equivalently, if \(A \) is the intersection of \((\tau_1, \tau_2)^* \)-\(Q^* \) open sets. \(A \) is said to be \((\tau_1, \tau_2)^* \)-\(Q^* \) close in \((X, \tau_1, \tau_2) \) if it is the intersection of a \((\tau_1, \tau_2)^* \)-\(Q^* \) \(\lambda \) set in \((X, \tau_1, \tau_2) \) and a quasi closed set in \((X, \tau_1, \tau_2) \). Clearly, \((\tau_1, \tau_2)^* \)-\(Q^* \) - \(\lambda \) set sand \((\tau_1, \tau_2)^* \)-\(Q^* \) closed sets are \((\tau_1, \tau_2)^* \)-\(Q^* - \lambda \) closed; complements of \((\tau_1, \tau_2)^* \)-\(Q^* \) - \(\lambda \) closed sets in \((X, \tau_1, \tau_2) \) are said to be \((\tau_1, \tau_2)^* \)-\(Q^* \) open in \((X, \tau_1, \tau_2) \).

Proposition 3.5: For a subset \(A \) of a space \((X, \tau_1, \tau_2) \), the following are equivalent:

(i) \(A \) is \((\tau_1, \tau_2)^* \)-\(Q^* \) - \(\lambda \) closed in \((X, \tau_1, \tau_2) \).

(ii) \(A = L \cap (\tau_1, \tau_2)^* \)-\(Q^* \) cl(A), where \(L \) is a \((\tau_1, \tau_2)^* \)-\(Q^* - \lambda \) set in \((X, \tau_1, \tau_2) \).

(iii) \(A = (\tau_1, \tau_2)^* \)-\(Q^* \) ker(A) \(\cap (\tau_1, \tau_2)^* \)-\(Q^* \) cl(A).

Definition 3.5: A bijection \(f: X \rightarrow Y \) is called \((\tau_1, \tau_2)^* \)-\(Q^* \) homeomorphism, if \(f \) is \((\tau_1, \tau_2)^* \)-\(Q^* \) irresolute and its inverse also \((\tau_1, \tau_2)^* \)-\(Q^* \) irresolute.

Remark 3.2: We say that spaces \((X, \tau_1, \tau_2) \) and \((Y, \sigma_1, \sigma_2) \) are \((\tau_1, \tau_2)^* \)-\(Q^* \) homeomorphic if there exists a \((\tau_1, \tau_2)^* \)-\(Q^* \) homeomorphism from \((X, \tau_1, \tau_2) \) onto \((Y, \sigma_1, \sigma_2) \).

Theorem 3.3: Every \((\tau_1, \tau_2)^* \)-\(Q^* \) homeomorphism is a \((\tau_1, \tau_2)^* \)-\(Q^* \) homeomorphism.

Proof: Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be a \((\tau_1, \tau_2)^* \)-\(Q^* \) homeomorphism.

Then \(f \) is bijective, \((\tau_1, \tau_2)^* \)-\(Q^* \) irresolute and \(f^{-1} \) is \((\tau_1, \tau_2)^* \)-\(Q^* \) irresolute.

Since every \((\tau_1, \tau_2)^* \)-\(Q^* \) irresolute is \((\tau_1, \tau_2)^* \)-\(Q^* \) continuous, \(f \) and \(f^{-1} \) are \((\tau_1, \tau_2)^* \)-\(Q^* \) continuous and so \(f \) is a \((\tau_1, \tau_2)^* \)-\(Q^* \) homeomorphism.

Remark 3.3: The following example shows that the converse of the above theorem need not be true.

Example 3.5: Let \(X = Y = \{ a, b, c \} \), \(\tau_1 = \{ \phi, X, \{ a \}, \{ c \}, \{ a, c \} \} \) and \(\tau_2 = \{ \phi, X, \{ a \} \} \). Clearly \(\{ b \} \) is \((\tau_1, \tau_2)^* \)-\(Q^* \) closed in \(X \). Let \(\sigma_1 = \{ \phi, Y, \{ a \} \} \) and \(\sigma_2 = \{ \phi, Y \} \).

Then \(\sigma_1 \sigma_2 \) - open sets on \(Y \) are \(\phi, Y, \{ a \} \) and \(\sigma_1 \sigma_2 \) - closed sets on \(X \) are \(\{ b, c \} \). Since \(\{ b, c \} \) is \((\sigma_1, \sigma_2)^* \)-\(Q^* \) closed in \(Y \) but \(f^{-1}(\{ b, c \}) = \{ b, c \} \) is not \((\tau_1, \tau_2)^* \)-\(Q^* \) open in \(X \) and so \(f \) is not \((\tau_1, \tau_2)^* \)-\(Q^* \) irresolute.

Remark 3.4: The above example shows that the concepts of \((\tau_1, \tau_2)^* \)-homeomorphisms and \((\tau_1, \tau_2)^* \)-\(Q^* \)homeomorphisms are independent.

Definition 3.6: A map \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is said to be \((\tau_1, \tau_2)^* \)-\(Q^* \) closed if for every \((\tau_1, \tau_2)^* \)-\(Q^* \) closed \(F \) of \(X \), \(f(F) \) is \((\tau_1, \tau_2)^* \)-closed in \(Y \).
Proposition 3.6 - For any bijection \(f: X \rightarrow Y \), the following statements are equivalent.
(a) \(f^{-1}: Y \rightarrow X \) is \((\tau_1, \tau_2)^* - Q^* \) continuous.
(b) \(f \) is a \((\tau_1, \tau_2)^* - Q^* \) open map.
(c) \(f \) is a \((\tau_1, \tau_2)^* - Q^* \) closed map.

Proof:

Step 1: (a) \(\Rightarrow \) (b)
Let \(V \) be a \((\tau_1, \tau_2)^* \) - open set in \(X \).

Then \(X - V \) is \((\tau_1, \tau_2)^* \) - closed in \(X \).

Since \(f^{-1} \) is \((\tau_1, \tau_2)^* - Q^* \) continuous,

\((f^{-1})^{-1}(X - V) = f(X - V) = Y - f(V) \) is \((\tau_1, \tau_2)^* - Q^* \) closed in \(Y \).

Then \(f(V) \) is \((\tau_1, \tau_2)^* - Q^* \) open in \(Y \).

Hence \(f \) is a \((\tau_1, \tau_2)^* - Q^* \) open map.

Step 2: (b) \(\Rightarrow \) (c).
Let \(f \) be a \((\tau_1, \tau_2)^* - Q^* \) open map.

Let \(U \) be \((\tau_1, \tau_2)^* \) - closed set in \(X \).

Then \(X - U \) is \((\tau_1, \tau_2)^* \) - open in \(X \).

Since \(f \) is \((\tau_1, \tau_2)^* - Q^* \) open,

\(f(X - U) = Y - f(U) \) is \((\tau_1, \tau_2)^* - Q^* \) open in \(Y \).

Then \(f(U) \) is \((\tau_1, \tau_2)^* - Q^* \) closed in \(Y \).

Hence \(f \) is a \((\tau_1, \tau_2)^* - Q^* \) closed.

Step 3: (c) \(\Rightarrow \) (a).
Let \(V \) be \((\tau_1, \tau_2)^* - Q^* \) closed set in \(X \).

Since \(f: X \rightarrow Y \) is \((\tau_1, \tau_2)^* - Q^* \) closed,

\(f(V) \) is \((\tau_1, \tau_2)^* - Q^* \) closed in \(Y \).

That is \((f^{-1})^{-1}(V) \) is \((\tau_1, \tau_2)^* - Q^* \) closed in \(Y \).

Hence \(f^{-1} \) is \((\tau_1, \tau_2)^* - Q^* \) continuous.

Proposition 3.7: Let \(f: X \rightarrow Y \) be a bijective and \((\tau_1, \tau_2)^* - Q^* \) continuous map. Then the following statements are equivalent.
(a) \(f \) is a \((\tau_1, \tau_2)^* - Q^* \) open map.
(b) \(f \) is a \((\tau_1, \tau_2)^* - Q^* \) homeomorphism.
(c) \(f \) is a \((\tau_1, \tau_2)^* - Q^* \) closed map.

Proof:

Step 1: (a) \(\Rightarrow \) (b).
Given \(f \) is bijective, \((\tau_1, \tau_2)^* - Q^* \) continuous map and \((\tau_1, \tau_2)^* - Q^* \) open map. Hence \(f \) is \((\tau_1, \tau_2)^* - Q^* \) homeomorphism.

Step 2: (b) \(\Rightarrow \) (c).
Let \(f \) be a \((\tau_1, \tau_2)^* - Q^* \) homeomorphism.

Hence \(f \) is \((\tau_1, \tau_2)^* - Q^* \) open.
By Proposition 3.6, \(f \) is \((\tau_1, \tau_2)* - Q^*\) closed.

Step 3: (c) \(\Rightarrow\) (a)

Follows from Proposition 3.6.

Definition 3.7: Let \(S \) be a subset of \(X \). Let \(x \in X \). Then \(x \) is said to be a \((\tau_1, \tau_2)* - Q^*\) limit point of \(S \) if and only if every \((\tau_1, \tau_2)* - Q^*\) open set containing \(x \) contains at least one point other than \(x \).

Definition 3.8: Let \(S \) be a subset of \(X \). Then the set of all \((\tau_1, \tau_2)* - Q^*\) limit points of \(S \) is said to be \((\tau_1, \tau_2)* - Q^*\) derived set of \(S \) and it is denoted by \((\tau_1, \tau_2)* - D Q^* (S)\).

Theorem 3.4: Let \(A \) be a subset of \(X \). Let \((\tau_1, \tau_2)* - D Q^* (A)\) be the set of all \((\tau_1, \tau_2)* - Q^*\) limit points of \(A \). Then \((\tau_1, \tau_2)* - Q^* cl(A) = A \cup (\tau_1, \tau_2)* - D Q^* (A)\).

Proof: Let \(x \in A \cup (\tau_1, \tau_2)* - D Q^* (A)\).

This implies either \(x \in A \) or \(x \in (\tau_1, \tau_2)* - D Q^* (A)\).

If \(x \in A \), then \(x \in (\tau_1, \tau_2)* - Q^* cl(A)\).

If \(x \in (\tau_1, \tau_2)* - D Q^* (A)\), then every \((\tau_1, \tau_2)* - Q^*\) open set contains \(x \) will intersect with \(A \).

Therefore, \(x \in (\tau_1, \tau_2)* - Q^* cl(A)\).

This implies \(A \cup (\tau_1, \tau_2)* - D Q^* (A) \subseteq (\tau_1, \tau_2)* - Q^* cl(A)\).

If \(x \in (\tau_1, \tau_2)* - Q^* cl(A)\), then to prove \(x \in A \cup (\tau_1, \tau_2)* - D Q^* (A)\).

If \(x \in A \), then \(x \in A \cup (\tau_1, \tau_2)* - D Q^* (A)\).

If \(x \notin A \), since \(x \in (\tau_1, \tau_2)* - Q^* cl(A)\) implies every \((\tau_1, \tau_2)* - Q^*\) open set of \(x \) intersects with \(A \).

Hence \(x \in (\tau_1, \tau_2)* - D Q^* (A)\).

Therefore, \((\tau_1, \tau_2)* - Q^* cl(A) = A \cup (\tau_1, \tau_2)* - D Q^* (A)\).

Definition 3.9: Let \(S \) be a subset of \(X \). Any point of \((\tau_1, \tau_2)* - Q^* cl (S)\) is referred to as a \((\tau_1, \tau_2)* - Q^*\) contact (or adherent) point of \(S \).

Definition 3.10 [6]: A bijection \(f: X \rightarrow Y \) is called \((\tau_1, \tau_2)* - Q^*\) homeomorphism, if \(f \) is \((\tau_1, \tau_2)* - Q^*\) continuous and its inverse also \((\tau_1, \tau_2)* - Q^*\) continuous.

Example 3.6: In example 3.1, \(\phi, \{a\}, \{a, c\} \) are \(\sigma_1 \sigma_2 - Q^*\) closed in \(Y \). Let \(f: X \rightarrow Y \) be the identity map. Then \(f(\phi) = \phi, f(\{a\}, \{a, c\}, f(\{a\}) = \{a\} \). Since \(\phi, \{a, c\}, \{a\} \) are \(\tau_2\) - closed in \(X \). Therefore, \(f \) and \(f^{-1} \) are \(\tau_1 \tau_2 - Q^*\) continuous.

Hence \(f \) is a \(\tau_1 \tau_2 - Q^*\) homeomorphism.

Definition 3.11: A bijection \(f: X \rightarrow Y \) is called \(\tau_1 \tau_2 - Q^*\) homeomorphism, if \(f \) is \(\tau_1 \tau_2 - Q^*\) irresolute and its inverse also \(\tau_1 \tau_2 - Q^*\) irresolute.

Theorem 3.3: Every \(\tau_1 \tau_2 - Q^*\) homeomorphism is a \(\tau_1 \tau_2 - Q^*\) homeomorphism.

Proof: Let \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be a \(\tau_1 \tau_2 - Q^*\) homeomorphism.

Then \(f \) is bijective, \(\tau_1 \tau_2 - Q^*\) irresolute and \(f^{-1} \) is \(\tau_1 \tau_2 - Q^*\) irresolute.

Since every \(\tau_1 \tau_2 - Q^*\) irresolute is \(\tau_1 \tau_2 - Q^*\) continuous, \(f \) and \(f^{-1} \) are \(\tau_1 \tau_2 - Q^*\) continuous and so \(f \) is a \(\tau_1 \tau_2 - Q^*\) homeomorphism.

Remark 3.3: The following example shows that the converse of the above theorem need not be true.
Example 3.7: Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}, \{a, c\}\}$ and $\tau_2 = \{\emptyset, X, \{a\}\}$. Clearly $\{b, c\}$ is $\tau_1 \tau_2$-Q* closed in X. Let $\sigma_1 = \{\emptyset, Y, \{a\}\}$ and $\sigma_2 = \{\emptyset, Y\}$. Then $\sigma_1 \sigma_2$-open sets on Y are $\emptyset, Y, \{a\}$ and $\sigma_1 \sigma_2$-closed sets on X are $\emptyset, Y, \{b, c\}$. Since $\{b, c\}$ is $\sigma_1 \sigma_2$-Q* closed in Y but $f^{-1}(\{b, c\}) = \{b, c\}$ is not $\tau_1 \tau_2$-Q* open in X and so f is not $\tau_1 \tau_2$-Q* irresolute.

Remark 3.4: The above example shows that the concepts of $\tau_1 \tau_2$-homeomorphisms and $\tau_1 \tau_2$-Q* homeomorphism are independent.

Definition 3.12: A bitopological space (X, τ_1, τ_2) is called (τ_1, τ_2)*-irreducible if X is not empty and whenever $X = A_1 \cup A_2$ with (τ_1, τ_2)*-closed subsets $A_i \in X$ ($i = 1, 2$) then we have $X = A_1$ or A_2.

Example: Let $X = \{1, 2, 3\}$ and $\tau_1 = \{\emptyset, X, \{1\}, \{1, 2\}\}$ and $\tau_2 = \{\emptyset, X, \{1\}\}$. Then (τ_1, τ_2)*-closed sets are $\emptyset, X, \{2, 3\}, \{3\}$. Then X is (τ_1, τ_2)*-irreducible.

Theorem: A bitopological space X is (τ_1, τ_2)*-irreducible if and only if every nonempty open set is (τ_1, τ_2)*-Q* open.

Proof: Let X be a (τ_1, τ_2)*-irreducible.

Let U be any nonempty open set.

If $U = X$ then nothing to prove.

Let $U \neq X$.

Then (τ_1, τ_2)*-cl $(U) \neq X$.

Then there exists an (τ_1, τ_2)*-open set V such that $U \cap V = \emptyset$.

This implies $U^c \cap V^c = X$, where U^c and V^c are proper (τ_1, τ_2)*-closed sets which is a contradiction to the fact that X is (τ_1, τ_2)*-irreducible.

Conversely assume that every (τ_1, τ_2)*-open set is (τ_1, τ_2)*-Q* open.

We claim that X is (τ_1, τ_2)*-irreducible.

Then $X = A \cup B$, where A and B are proper nonempty (τ_1, τ_2)*-closed sets.

$A^c \cap B^c = \emptyset$.

Then A^c is not dense.

Then A^c is an (τ_1, τ_2)*-open set but not (τ_1, τ_2)*- Q* open.

Hence X is irreducible.

Definition 3.13: A bitopological space (X, τ_i, τ_j) is called $\tau_i \tau_j$-irreducible if X is not empty and whenever $X = A_1 \cup A_2$ with τ_i-closed subset $A_1 \in X$ and τ_j-closed subset $A_2 \in X$ ($i, j = 1, 2$) then we have $X = A_1$ or A_2.

Example: Let $X = \{1, 2, 3\}$ and $\tau_1 = \{\emptyset, X, \{1\}, \{1, 3\}\}$ and $\tau_2 = \{\emptyset, X, \{2\}, \{2, 3\}\}$. Then τ_1-closed sets are $\emptyset, X, \{2, 3\}, \{2\}$ and τ_2-closed sets are $\emptyset, X, \{1, 3\}, \{1\}$. Then X is $\tau_1 \tau_2$-irreducible.

Theorem: A bitopological space X is $\tau_1 \tau_2$-irreducible if and only if every nonempty open set is $\tau_1 \tau_2$- Q* open.

Proof: Let X be a $\tau_1 \tau_2$-irreducible.

Let U be any nonempty τ_j-open set.

If $U = X$ then nothing to prove.

Let $U \neq X$.

© 2013, RIPA. All Rights Reserved.
Then $\tau_i - \text{cl} (U) \neq X$. Then there exists an τ_i- open set V such that $U \cap V = \phi$.

This implies $U^c \cap V^c = X$, where U^c and V^c are proper τ_i - closed set and τ_j-closed set which is a contradiction to the fact that X is $\tau_i \tau_j$ - irreducible.

Conversely assume that every $\tau_i \tau_j$ - open set is $\tau_i \tau_j$ - Q^* open.

We claim that X is $\tau_i \tau_j$ - irreducible.

Then $X = A \cup B$, where A and B are proper nonempty τ_i - closed set and τ_j - closed set.

$A^c \cap B^c = \phi$.

Then A^c is not dense.

Then A^c is an $\tau_i \tau_j$ - open set but not $\tau_i \tau_j$ - Q^* open.

Hence X is irreducible.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared