Research Journal of Pure Algebra -3(2), 2013, Page: 95-100 Available online through www.rjpa.info

NEIGHBOURHOOD CONNECTED 2-EQUITABLE DOMINATION IN GRAPHS

*Sivakumar. S., N. D. Soner and Anwar Alwardi

Department of Studies in Mathematics University of Mysore, Mysore 570 006, India

(Received on: 02-02-13; Revised & Accepted on: 18-02-13)

ABSTRACT

Let G = (V, E) be a graph, two vertices u and v in V said to be equitable adjacent, if u and v are adjacent in G and $|deg(u)-deg(v)| \le 1$. The minimum cardinality of such a dominating set is denoted by $\gamma_e(G)$ and is called equitable domination number of G. In this paper we introduce the neighbourhood connected 2-equitable domination number in graph, exact value for some standard graphs bounds and some interesting results are obtained.

Keywords: Equitable domination number, 2-equitable dominating set, Neighbourhood Connected 2-equitable dominateon in Graphs, chromatic number.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

Introduction: By a graph G = (V, E) we mean a finite, undirected with neither loops nor multiple edges the order and size of G are denoted by p and q respectively for graph theoretic terminology we refer to Chartrand and Lesnaik [2] A subset S of V is called a dominating set if N[S] = V the minimum (maximum) cardinality of a minimal dominating set of G is called the domination number (upper domination number) of G and is denoted by $\gamma(G)$, ($\Gamma(G)$). An excellent treatment of the fundamentals of domination is given in the book by Haynes etal [5] A survey of several advanced topics in domination is given in the book edited by Haynes *et al.* [6]. Various types of domination have been defined and studied by several authors and more than 75 models of domination are listed in the appendix of Haynes *et al.* [5]. Sampathkumar and Walikar [8] introduced the concept of connected domination in graphs. Let G = (V, E) be a graph and let $v \in V$ the open neighborhood and the closed neighborhood of v are denoted by N(v) and $N[v] = N(v) \cup v$ respectively. If $S \subseteq V$ then $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = N(S) \cup S$. If $S \subseteq V$ and $u \in S$ then the private neighbor set of u with respect to S is defined by $Pn[u, S] = \{v : N[v] \cap S = \{u\}\}$.

A dominating set S of G is called a connected dominating set if the induced subgraph $\langle S \rangle$ is connected the minimum cardinality of a connected dominating set of G is called the connected domination number of G and is denoted by $\gamma_c(G)$. A dominating set S of a connected graph G is called a neighborhood connected dominating set (ncd-set) if the induced subgraph $\langle N(S) \rangle$ is connected. The minimum cardinality of a ncd-set of G is called the neighborhood connected domination number of G and is denoted by $\gamma_{nc}(G)$. A ncd-set S is said to be minimal if no proper subset of S is a ncd-set. A coloring of a graph G is an assignment of colors to the vertices of G such that no two adjacent vertices receive the same color. The minimum integer K for which a graph G is k – colorable is called the chromatic number of G and is denoted by $\chi(G)$.

A subset *S* of *V* is called an equitable dominating set if for every $v \in V - S$ there exist a vertex $u \in S$ such that $uv \in E(G)$ and $|d(u) - d(v)| \leq 1$. The minimum cardinality of such an equitable dominating set is denoted by γ_e and is called the equitable domination number of *G*. A vertex $u \in V$ is said to be degree equitable with a vertex $v \in V$ if $|d(u) - d(v)| \leq 1$. If *S* is an equitable dominating set then any super set of *S* is an equitable dominating

*Corresponding author: *Sivakumar. S.

Department of Studies in Mathematics University of Mysore, Mysore 570 006, India

set. An equitable set S is said to be a minimal equitable dominating set if no proper subset of S is an equitable dominating set. The minimal upper equitable dominating number is Γ_e the upper equitable dominating set of G. If $u \in V$ such that $|d(u) - d(v)| \ge 2$ for every $v \in N(u)$ then u is in every equitable dominating set such points are called an equitable isolated. I_e denotes the set of all equitable isolates. An equitable dominating S of connected graph G is called an equitable connected dominating set (ecd-set) if the induced subgraph $\langle S \rangle$ is connected. The minimum cardinality of a ecd-set of G is called the equitable connected domination number of G and is denoted by $\gamma_{ec}(G)$. Let G = (V, E) be a graph and let $u \in V$ the equitable neighborhood of u denoted by $N_e(u)$ is defined as $N_e(u) = \{v \in V : | v \in N(u), | d(u) - d(v) | \le 1\}$ The maximum and minimum equitable degree of a point in G are denoted by $\Delta_e(G)$ and $\delta_e(G)$ that is $\Delta_e(G) = max_{u \in V(G)} | N_e(u) |$ and $\delta_e(G) = min_{u \in V(G)} | N_e(u) |$. The open equitable neighborhood and closed equitable neighborhood of v are denoted by $N_e(v)$ and $N_e[v] = N_e(v) \cup \{v\}$ respectively. If $S \subseteq V$ then $N_e(S) = \bigcup_{v \in S} N_e(v)$ and $N[S] = N_e(S) \cup S$. If $S \subseteq V$ and $u \in S$ then the private equitable neighbor set of u with respect to S is defined by $pne[u, S] = N_e[u] - N_e[S - \{u\}]$.

If G is connected graph, then a vertex cut of G is a subset R of V (G) with the property that the subgraph of G induced by V(G) - R is disconnected. If G is not a complete Graph, then the vertex connectivity number k(G) is the minimum cardinality of a vertex cut. If G is complete graph K_p it is known that k(G) = p - 1

Definition: Let G = (V, E) be a graph. An equitable dominating set S of a graph G is called 2-equitable dominating set (2-ed-set) if for any vertex v in G either $v \in S$ or v is equitable dominated by at least 2 vertices in S. The minimum cardinality of a an 2-equitable dominating set of G is called the 2-equitable domination number of G and is denoted by $\gamma_{x2e}(G)$.

2. MAIN RESULTS

Definition: A Set $S \subseteq V$ is called the neighborhood Connected 2-equitable dominating set (nc2ed-set) of a graph G if for every $u \in V(G)$ either $u \in S$ or u is equitable dominated by at least 2 vertices in S and the induced subgraph $\langle N(S) \rangle$ is connected, The minimum Cardinality of nc2ed-set G is called the neighborhood Connected 2-equitable domination of G and is denoted by $\gamma_{2nce}(G)$.

Examples: γ_{2nce} value for well known graphs 1) $\gamma_{2nce}(K_p)=2$

2)
$$\gamma_{2nce}(\mathbf{K}_{r,s}) = \begin{cases} 4 & \text{if } r \text{ and } s \neq 2, |r-s| \leq 1 \\ 3 & \text{If } r \text{ and } s = 2 \\ r+s & \text{if } |r-s| \geq 2 \end{cases}$$

3) $\gamma_{2nce}(\mathbf{W}_{p}) = \gamma_{2nce}(\mathbf{C}_{p-1}) + 1 = \begin{cases} \left\lfloor \frac{2p+1}{3} \right\rfloor & \text{If } p \equiv 0 \pmod{3} \\ \left\lfloor \frac{2p-2}{3} \right\rfloor + 1 & \text{otherwise} \end{cases}$

In the following proposition we determine the relation between the $\gamma_{2nce}(G)$ and the other invariant domination parameters

Proposition 2.1: For any graph G. $\gamma(G) \le \gamma_{nce}(G) \le \gamma_{2nce}(G)$. **© 2013, RJPA. All Rights Reserved**

Proposition 2.2: For any graph G. $\gamma_{2e}(G) \leq \gamma_{2nce}(G)$.

Theorem 2.3: For any non-trivial path P_P, $\gamma_{2nce}(P_p) = \left\lceil \frac{2p}{3} \right\rceil$

Proof: Let $P_p = (v_1, v_2, \dots, v_P)$ and p=3k+r where $0 \le r \le 2$

Let $S = \{v_i \in V: i{=}3j, 3j{+}1, 0 \leq j \leq k \ \}$

Let
$$S_1 = \begin{cases} S & \text{If } p \equiv 0,1 \pmod{3} \\ \\ S \cup \{v_p\} & \text{If } p \equiv 2 \pmod{3} \end{cases}$$

Clearly S₁ is a nc2ed-set of P_p and hence $\gamma_{2nce}(P_p) = \left\lceil \frac{2p}{3} \right\rceil$. Further if S is any γ_{2nce} -set of P_p, then N_e(S) contains all the internal vertices of P_p and hence $|S| \ge \left\lceil \frac{2p}{3} \right\rceil$ Thus $\gamma_{2nce}(P_p) = \left\lceil \frac{2p}{3} \right\rceil$

Corollary 2.4: For any non-trivial path P_p , $\gamma_{2nce}(P_p) = \gamma_{nce}(P_p)$ if and only if p=3.

Proof: Since $\gamma_{nce}(P_p) = \left\lceil \frac{p}{3} \right\rceil$ the corollary follows.

Theorem 2.5: For the cycle C_p on p vertices,

$$\gamma_{2nce} \left(C_{p} \right) = \begin{cases} \left\lfloor \frac{2p}{3} \right\rfloor & \text{If } p \equiv 2 \pmod{3} \\ \\ \left\lfloor \frac{2p}{3} \right\rfloor & \text{If } p \not\equiv 2 \pmod{3} \end{cases}$$

 $\begin{array}{l} \text{Proof: Let } C_p = (v_1, \, v_2, \, \dots, \, v_p, \, v_1) \text{ and } p = 2k + r, \\ \text{Where } 0 \leq r \leq 2. \text{ Let } S = \{v_i \colon i = 3j + 1, \, 3j + 2, \, 0 \leq j \leq k - 1\} \\ \text{Let } S_1 = \begin{cases} S & \text{ If } p \equiv 0 \pmod{3} \\ S \cup \{v_p\} & \text{ If } p \equiv 1 \pmod{3} \\ S \cup \{v_{p-1}\} & \text{ If } p \equiv 2 \pmod{3} \end{cases}$

Clearly S_1 is a nc2ed-set of C_p and hence

$$\gamma_{2nce} \left(C_{p} \right) = \begin{cases} \left\lfloor \frac{2p}{3} \right\rfloor & \text{If } p \equiv 2 \pmod{3} \\ \\ \left\lceil \frac{2p}{3} \right\rceil & \text{If } p \neq 3 \pmod{3} \end{cases}$$

Now let S be any γ_{2nce} -set of C_p . Then

$$N_{e}(S) = \begin{cases} P_{p-1} & \text{if } p \equiv 2 \pmod{3} \\ \\ C_{p} & \text{if } p \not\equiv 2 \pmod{3} \end{cases}$$

© 2013, RJPA. All Rights Reserved

Hence

$$|\mathbf{S}| \ge \begin{cases} \left\lfloor \frac{2p}{3} \right\rfloor & \text{If } p \equiv 2 \pmod{3} \\ \left\lfloor \frac{2p}{3} \right\rfloor & \text{If } p \not\equiv 2 \pmod{3} \end{cases}$$

and the result follows.

Corollary 2.6: $\gamma_{2nce}(C_p) = \gamma_{nce}(C_p)$ iff and only if p=5.

Proof: Since

$$\gamma_{2nce}\left(C_{p}\right) = \begin{cases} \left\lceil \frac{p}{2} \right\rceil & \text{If } p \neq 3 \pmod{4} \\ \\ \left\lfloor \frac{p}{2} \right\rfloor & \text{If } p \equiv 3 \pmod{4} \end{cases}$$

The result follows.

Proposition 2.7: Any nce2d set contain all the pendent vertices of G.

Proof: Suppose the graph contains support vertices then by definition of nce2d-set, all the pendent vertices of G contains nce2d-set.

Proposition 2.8: $\gamma_{2nce}(G) \leq p$ the equality holds if and only if $G \cong K_2$

Proof: Suppose $\gamma_{2nce} = p$ assume that $G \cong K_2$

Then G has at least three vertices u, v and w such that u and v are adjacent and w is not adjacent to one of u and v suppose w is not adjacent to u. This implies that $V-\{u\}$ is a neighbourhood connected equitable 2-domination set of G, a contradiction. Hence G is isomorphic to K_2 converse is obvious.

Definition 2.9: A set S is minimal neighbourhood connected 2-equitable dominating set of G, if for any vertex $u \in S$, $S-\{u\}$ is not a neighbourhood connected 2-equitable dominating set of graph G

Lemma 2.10: A super set of a nc2ed-set is a minimal nc2ed-set.

Proof: Let S be a nce2d-set of a graph G and Let $S_1=S\cup\{v\}$ where $v\in V-S$. Clearly $v\in N_e(S)$ and S_1 is a 2equitable dominating set of G. Now, let $x, y \in N_e(S_1)$. If $x, y\in N_e(S)$ then any x-y path in $N_e(S)$ is a x-y path in $N_e(S_1)$. If $x \in N_e(S)$ and $y\notin N_e(v)$ and x-v path in $N_e(S)$ followed by the edge v is a x-y path in $N_e(S_1)$. Also if x, $y \notin N_e(S)$ then (x, v, y) is a x-y path in $N_e(S_1)$. Thus $\langle N_e(S_1) \rangle$ is connected so that S_1 is a nce2d-set of G.

Theorem 2.11: A nc2ed-set S of a graph G is a minimal nc2ed-set if and only if for every $u \in S$ one of the following holds.

$$1) \quad |N_e(u) {\cap} S| \leq |.$$

- 2) There exists a vertex $v \in (V-S) \cap N_e(u)$ such that $|N_e(v) \cap S|=2$.
- 3) There exist two vertices $x,y \in N_e(S)$ such that every x-y path in $\langle N_e(S) \rangle$ contains at least one vertex of $N_e(S)-N_e(S-\{u\})$.

Proof: Let S be a minimal nce2d-set and let $u \in S$, let $S_1=S-\{u\}$. Then S_1 is not a nc2ed-set. This gives either S_1 is not a 2equitable dominating set or $\langle N_e(S) \rangle$ is disconnected. If S_1 is not an 2equitable dominating set then there exists a vertex $v \in V-S_1$ such that $|N_e(v) \cap S_1| \le 1$. If v = u then $|N_e(u) \cap (S-\{u\}) \le 1$ which gives $|N_e(u) \cap S| \le 1$. Suppose $u \ne v$. If $|N_e(v) \cap S_1| < 1$ then $|N_e(v) \cap S| < 1$ and hence S is not an 2equitable dominating set which is a contradiction. Hence $|N_e(v) \cap S| = 1$. Thus $v \in N_e(u)$. So $v \in (V-S) \cap N_e(u)$ such that $|N_e(v) \cap S| = 2$. If $\langle N_e(S_1) \rangle$ is disconnected then there exist two @ 2013, RJPA. All Rights Reserved 98

*Sivakumar. S., N. D. Soner and Anwar Alwardi/Neighbourhood Connected 2-equitable domination in Graphs/ RJPA- 3(2), Feb.-2013.

vertices x, $y \in N_e(S_1)$ such that there is no x-y path in $\langle N_e(S_1) \rangle$ since $\langle N_e(S) \rangle$ is connected, it follows that every x-y in $\langle N_e(S_1) \rangle$ contains at least one vertex of $N_e(S)-N_e(S-\{u\})$. Conversely, if S is nc2ed-set of G satisfying the conditions of the theorem, then S is 1-minimal and hence result follows above lemma.

Theorem 2.12: Let G be a graph with P≥4 then $\gamma_{2nce}(G) \ge \left(\frac{2p+1-q}{2}\right)$ and this bound is sharp.

Proof: Let S be a γ_{2nce} -set of G. Then each vertex of V–S is equitable adjacent to at least two vertices in S. If G is not a star then since $\langle N_e(S) \rangle$ is connected either V–S or S contains at least one equitable edge. Hence the number of equitable

 $\text{edges } q \geq 2 \left| V - S \right| + 1 = 2p - 2\gamma_{2nce} + 1 \text{ then } \gamma_{2nce} \geq \frac{2p + 1 - q}{2} \text{ . The bound is sharp for } C_5 \text{ and } K_2.$

Theorem 2.13: For any graph G, $\gamma_{2nce}(G) \ge \frac{2p}{(\Delta_e + 2)}$

Proof: Let S be a minimum nc2ed-set and let k be the number of edges between S and V–S. Since the degree of each vertex in S is atmost Δ_e , $k \leq \Delta_e \gamma_{2nce}$. But since each vertex in V–S is adjacent to at least 2 vertices in S, $k \geq 2(p - \gamma_{2nce})$ combining these two inequalities produce

$$\gamma_{2nce}(G) \geq \frac{2p}{(\Delta_e + 2)}$$

Definition2.14: A colouring of a graph G is an assignment of colours to the vertices of G such that no two adjacent vertices receive the same colour, the minimum integer k for which a graph G is k-colourable is called the chromatic number of G and is denoted by $\chi(G)$.

Theorem 2.15: For any graph G, $\gamma_{2nce}(G) + \chi(G) \le 2p$ and equality holds if and only if G is isomorphic to K₂.

Proof: The inequality is obvious, let $\gamma_{2nce}(G) + \chi(G) = 2p$. This implies $\gamma_{2nce}(G) = p$ and $\chi(G) = p$. Hence G is isomorphic to K₂. The converse is obvious.

Theorem 2.16: Let G be a graph. Then $\gamma_{2nce}(G) + \chi(G) = 2p - 1$ if and only if G is isomorphic to K₃.

Proof: Let us assume that $\gamma_{2nce}(G) + \chi(G) = 2p - 1$. This is possible only if (i) $\gamma_{2nce}(G) = 2p$ and $\chi(G) = 2p - 1$ or (ii) $\gamma_{2nce}(G) = p - 1$ and $\chi(G) = p$. Since the condition (i) is impossible, condition (ii) holds. Thus implies G is a complete graph with $\gamma_{2nce}(G) = p - 1$. Then p = 3 and hence G is isomorphic to K₃. The converse is obvious.

Definition2.17: Let $H(v_1, v_2, ..., v_p)$ denotes the graph obtained from the graph H by pasting v_i edges to the vertex $v_i \in V(H)$, $1 \le i \le p$.

Theorem 2.18: For any graph, $\gamma_{2nce}(G) + \chi(G) = 2p - 2$ if and only if G is isomorphic to K₄, or P₃ or K₃(1, 0, 0).

Proof: Let us assume $\gamma_{2nce}(G) + \chi(G) = 2p - 2$. This is possible only if $\gamma_{2nce}(G) = p$ and $\chi(G) = p - 2$ or $\gamma_{2nce}(G) = p - 1$ and $\chi(G) = p - 1$ or $\gamma_{2nce}(G) = p - 2$ and $\chi(G) = p$. Let $\gamma_{2nce}(G) = p$ and $\chi(G) = p - 2$. Since $\gamma_{2nce}(G) = p$ which gives G is isomorphic to K_2 , and hence $\chi(G) = 2 \neq p - 2$ which is a contradiction. Suppose $\gamma_{2nce}(G) = p - 1$ and $\chi(G) = p - 1$. Since $\chi(G) = p - 1$, G contains a complete sub graph K on (p-1) vertices. Let $V(K) = \{v_1, v_2, \dots, v_{p-1}\}$ and $V(G) - V(K) = \{v_p\}$. Then v_p is equitable adjacent to v_i for some vertex $v_i \in V(K)$. If $deg_e(v_p) = 1$ and $p \geq 4$ then $\{v_i, v_j, v_p\}$, $i \neq j$ is a γ_{2nce} -set of G. Hence p=4 and $K=K_3$. Thus G is isomorphic to $K_3(1, 0, 0)$. If $deg_e(v_p) = 1$ and p = 3 then G is isomorphic to P_3 . If $deg_e(v_p) > 1$ then $\gamma_{2nce} = 2$. Then p = 3 which gives G is isomorphic to K_3 which is a contradiction to $\chi(G) = p - 1$.

Suppose $\gamma_{2nce}(G) = p-2$ and $\chi(G) = p$. since $\chi(G) = p$, isomorphic to K_p . But $\gamma_{2nce}(K_p)=2$. Therefore p=4. Hence G is isomorphic to K_4 . The converse is obvious

ACKNOWLEDGMENTS

This research was supported by UGC-SAP, DRS-1, No F.510/2/DRS/201(SAP-1). India

*Sivakumar. S., N. D. Soner and Anwar Alwardi/Neighbourhood Connected 2-equitable domination in Graphs/ RJPA- 3(2), Feb.-2013.

REFERENCES

[1] Arumugam.S and Sivagnanam.C., "Neighborhood connected domination in graphs", J. Combin. Math, Combin Compat., Vol.73, PP.55-64, 2010.

[2] G. Chartrand and L. Lesnaik, Graphs and Digraphs, Chapman and Hall. CRC, 4th edition, 2005.

[3] K. D. Dharmalingam, Studies in Graph Theorey-Equitable domination and bottleneck domination, Ph.D Thesis (2006).

- [4] Harary. F., and T.W., Haynes, Double domination in Graphs, Ars Combin, 55,(2000), 201-213.
- [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, (Fundamentals of Domination in Graphs) Marcel Dekker Inc., 1998.
- [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs Advanced Topics, Marcel Dekker Inc., 1998.

[7] S.T. Hedetniemi and R. Laskar, Connected domination in graphs, Graph Theory and Combinatorics, B. Bollobas. Ed.. Academic Press, London. 1984, 209-217.

[8] E. Sampathkumar and H.B. Walikar, the connected domination number of a graph, J. Math. Phys. Sci., 13(1979), 607-613.

Source of support: UGC-SAP, DRS-1, No F.510/2/DRS/201 (SAP-1), India