Research Journal of Pure Algebra -3(1), 2013, Page: 62-66
Available online through www.rjpa.info ISSN 2248-9037

THE INDEPENDENT TRANSVERSAL NEIGHBOURHOOD NUMBER OF A GRAPH
${ }^{1}$ P. M. SHIVASWAMY* \& ${ }^{2}$ N. D. SONER
${ }^{1}$ Department of Mathematics, B.M.S College of Engineering Bangalore - 560019, India
${ }^{2}$ Department of Studies in Mathematics, University of Mysore, Mysore - 570006, India

(Received on: 08-12-12; Revised \& Accepted on: 23-01-13)

Abstract

\boldsymbol{A} set S of vertices in a graph \boldsymbol{G} is a neighbourhood set of G if $G=\bigcup_{v \in S}\langle N[v]\rangle$ where $\langle N[v]\rangle$ is the subgraph of G induced by v and all points adjacent to v. A neighbourhood set $S \subseteq V$ of a graph G is said to be an independent transversal neighbourhood, if S intersects every maximum independent set of G. The minimum cardinality of an independent transversal neighbourhod set of G is called the independent transversal neighbourhood number of G and is denoted by $\eta_{i t}(G)$. In this paper we begin an investigation of this parameter.

Keywords: Neighbourhood set, Independent set, Independent transversal neighbourhood set.
2010 Mathematics Subject classification: 05C.

INTRODUCTION

By a graph $G=(V, E)$, we mean a finite, undirected graph with neither loops nor multiple edges. For graph theoretic terminology we refer to the book by Chartrand and Lesniak [1].

In a graph $G=(V, E)$, the open neighbourhood of a vertex $v \in V$ is $N(v)=\{x \in V: v x \in E)$, the set of vertices adjacent to v. The closed neighbourhood is $N[v]=N(v) \bigcup\{v\}$. A clique in a graph G is a complete subgraph of G. The maximum order of clique in G is called the clique number and is denoted by $\omega(G)$ and clique of order $\omega(\mathrm{G})$ is called a maximum clique. The subgraph induced by a set $S \subseteq V$ is denoted by $\langle S\rangle$.

A set $D \subseteq V$ is a dominating set, if every vertex in $V-D$ is adjacent to a vertex in D and the minimum cardinality of a dominating set is called the dominating number of G and is denoted by $\gamma(G)$. A survey of advanced topics in domination is given in the book by Haynes et.al [3].

Let deg (v) be the degree of vertex v and as usual $\delta(G)$, the minimum degree and (G), the maximum degree of a graph. $\alpha_{0}(G)$ is the minimum number of vertices in a vertex cover of G. $\beta_{0}(G)$ is the minimum number of vertices in a maximal independent set of vertex of G. we employ the notation $\lceil x\rceil$ to denote the smallest integer greater than or equal to x, and $\lfloor x\rfloor$ to denote the largest integer less than or equal to x.

A dominating set $S \subseteq \mathrm{~V}$ of a graph G is said to be an independent transversal dominating set, if S intersects every maximum independent set of G. The minimum cardinality of an independent tranversal dominating set of G is called the independent transversal domination number of G and is denoted by $\gamma_{i t}(G)$. This concept was introduced by Hamid in [2].

A set S of vertices in a graph G is a neighbourhood set of G if $G=\bigcup_{v \in S}\langle N[v]\rangle$ Where $\langle N[v]\rangle$ is a subgraph of G induced by v and all points adjacent to v. The neighbourhood number $\eta(G)$ of a graph G equals the minimum number of vertices in a neighbourhood set of G [4]. In this paper we introduced another basic neighbourhood parameter namely independent transversal neighbourhood number and initiate the study of this new neighbourhood parameter.

A neighbourhood set $S \subseteq V$ of a graph G is said to be an independent transversal neighbourhood, if S intersects every maximum independent set of G. The minimum cardinality of an independent transversal neighbourhood set of G and is called an independent transversal neighbourhood number and denoted by $\eta_{i t}(G)$.

[^0]
${ }^{1}$ P. M. SHIVASWAMY* \& ${ }^{2}$ N. D. SONER / THE INDEPENDENT TRANSVERSAL NEIGHBOURHOOD NUMBER OF A GRAPH/ RJPA- 3(1), Jan.-2013.

2. RESULTS

The following results are immediate

Proposition: 1

(i): For any graph $G, \gamma(G) \leq \eta(G) \leq \eta_{i t}(G)$.
(ii): For any graph $G, \gamma(G) \leq \gamma_{i t}(G) \leq \eta_{i t}(G)$.

Proposition: A [4] For any path P_{p} of order $p, \eta\left(P_{p}\right)=\left\lfloor\frac{p}{2}\right\rfloor$
Theorem: 2 For any path P_{p} of order $P, \eta_{i t}\left(P_{p}\right)=\left\lfloor\frac{p}{2}\right\rfloor+1$.
Proof: Let $P_{p}=\left(v_{1}, v_{2} \ldots v_{p}\right)$. Then $S=\left\{V_{2 i}: 1 \leq i \leq 2 n\right\}$ is the n-set of P_{p}
Further, $\langle V-S\rangle=\left\lfloor\frac{p}{2}\right\rfloor k_{1}$, and hence every independent set in $V-S$, contains at most $\left\lfloor\frac{p}{2}\right\rfloor$ vertices. Now since $\left\lfloor\frac{p}{2}\right\rfloor=\beta\left(P_{p}\right)$. It follows that $S \cup\{x\}$, where $x \in V-S$ is an independent transversal neighbourhood set of P_{p}.

Hence $\eta_{i t}\left(P_{p}\right)=|S|+1$.

$$
=\frac{p}{2}+1
$$

Since $\eta\left(\mathrm{P}_{\mathrm{p}}\right) \quad=\left\lfloor\frac{p}{2}\right\rfloor$
Proposition B. [4]: For any cycle C_{p}, with $p \geq 4, \eta\left(C_{p}\right)=\left\lceil\frac{p}{2}\right\rceil$
Theorem 3: For any cycle C_{p} of order $P, \eta_{i t}\left(C_{p}\right)=\left\lceil\frac{p}{2}\right\rceil+1$.
Proof: Let $C_{p}=\left(v_{1}, v_{2} \ldots v_{\mathrm{p}}\right)$. Then we consider two cases.
Case (i): If P is odd then $S=\left\{v_{1}, v_{3}, v_{5} \ldots v_{p-1}\right\}$
i.e., $S=\left\{v_{2 i+1}: 0 \leq i \leq \frac{p-1}{2}\right\}$ is a n-set of C_{p}.

Now, since $\langle v-s\rangle=\left\lceil\frac{p}{2}\right\rceil k_{1}$ every independent set in $V-S$ contains at most $\frac{p}{2}$ vertices and hence $V-S$ contains $\beta_{0^{-}}$ set.

Thus it follows that $S \bigcup\{u\}$ where $u \in \mathrm{~V}-\mathrm{S}$ is an independent tranversal neighbourhood set of C_{p}.
Hence $\eta_{i t}\left(C_{p}\right)=\eta\left(C_{p}\right)+1$

$$
=\left\lceil\frac{p}{2}\right\rceil+1
$$

Case (ii): If P is even, then
$s=\left\{v_{2 i}: 1 \leq i \leq \frac{p}{2}\right\}$ is a n-set of C_{p}. and $\langle V-S\rangle=\left(\frac{P}{2}\right) k_{1}$, hence every independence set in $V-S$ contains $\frac{p}{2}$ vertices so that $V-S$ contains $\beta_{0^{-}}$-set.

${ }^{1}$ P. M. SHIVASWAMY* \& ${ }^{2}$ N. D. SONER / THE INDEPENDENT TRANSVERSAL NEIGHBOURHOOD NUMBER OF A GRAPH/ RJPA- 3(1), Jan.-2013.

Thus it follows that $S \bigcup\{u\}$ where $u \in V-S$ is an independent transversal neighbourhood set of C_{p}.

$$
\text { hence } \begin{aligned}
\eta_{i t}\left(C_{p}\right) & =|S \bigcup\{u\}| \\
& =n\left(C_{p}\right)+1 \\
& =\frac{p}{2}+1 .
\end{aligned}
$$

From case (i) and (ii), we have $\eta_{i t}\left(C_{p}\right)=\left\lceil\frac{p}{2}\right\rceil+1$.
Corollary 1: For any wheel W_{p} on p vertices $(P \neq 4) \eta_{i t}\left(W_{p}\right)=\left\lceil\frac{p-1}{2}\right\rceil+1$.
Proof: Clearly, $\eta_{i t}\left(W_{p}\right)=\eta_{i t}\left(C_{p-1}\right)$.

$$
=\left\lceil\frac{p-1}{2}\right\rceil+1
$$

Theorem 4: For any graph G, we have $\eta(G) \leq \eta_{i t}(G) \leq \eta(G)+\delta(G)$.
Proof: Since an independent transversal neighbourhood set of G is a neighbourhood set, it follows that $\eta(G) \leq \eta_{i t}(G)$.
Now let u be a vertex in G with $\operatorname{deg}(u)=\delta(G)$, and let S be a n-set in G. Then every maximum independent set of G contains a vertex of $N(u)$, so that $S \bigcup N[u]$ is an independent transversal neighbourhood set of G. Also, since S intersect $N[u]$ it follows that $|S \cup N(u)| \leq \eta(G)+\delta(G)$ and hence the right inequalities follows.

Theorem 5: If G is a disconnected graph, with components $G_{1}, G_{2} \ldots G_{\mathrm{r}}$, then
$\eta_{i t}(G)=\min _{1 \leq i \leq r}\left\{\eta_{i t}\left(G_{i}\right)+\sum_{j=1, j \neq i}^{r} \eta\left(G_{j}\right)\right\}$.
Proof: Let $G=\bigcup_{i=1}^{r} G_{i}$
Suppose that $N_{1}, N_{2}, \ldots, N_{r}$ are the maximum neighbourhood sets of the graphs $G_{1}, G_{2}, ., G_{r}$ respectively and $S_{1}, S_{2} \ldots$ S_{r} are the minimum independent transversal neighbourhood sets of $G_{1}, G_{2}, \ldots, G_{\mathrm{r}}$.

Let $B_{1}, B_{2} \ldots, \mathrm{~B}_{\mathrm{r}}$ be the maximum independent sets of $G_{1}, G_{2}, \ldots, G_{\mathrm{r}}$. Any independent transversal neighbourhood set $S_{i}, i=1, \ldots, \mathrm{r}$ is intersect the set $\bigcup_{i=1}^{r} B_{i}$.

Hence $S_{1} \bigcup_{i=2}^{r} N_{i}, S_{2} \bigcup_{i=1, i \neq 2}^{r} N_{\mathrm{i}} \ldots S_{\mathrm{r}} \bigcup_{j=1, j \neq r}^{r-1} N_{j}$ are all the independent transversal neighbourhood of G and the order of those sets will be,
$\left.\eta_{i t}\left(G_{1}\right)+\sum_{i=2}^{r} \eta \neq 1 \quad G_{j}\right)$
$\eta_{i t}\left(G_{2}\right)+\sum_{i=1 j \neq 2}^{r} \eta\left(G_{j}\right)$
$\eta_{i t}\left(G_{3}\right)+\sum_{i=1 j \neq 3}^{r} \eta\left(G_{j}\right)$
$\eta_{i t}\left(G_{i}\right)+\sum_{i=1 j \neq i}^{r} \eta\left(G_{j}\right)$

${ }^{1}$ P. M. SHIVASWAMY* \& ${ }^{2}$ N. D. SONER / THE INDEPENDENT TRANSVERSAL NEIGHBOURHOOD NUMBER OF A GRAPH/ RJPA- 3(1), Jan.-2013.

Since the minimum independent transversal neighbourhood set is one of the set $S_{1} \bigcup_{i=1}^{r} N_{i}$ which has the minimum cardinality.

Hence $\eta_{i t}(G)=\min _{1 \leq i \leq r}\left\{\eta_{i t}\left(G_{i}\right)+\sum_{j=1, j \neq i}^{r} \eta\left(G_{j}\right)\right\}$.
Theorem 6: For any non-complete graph G with clique number $\omega, \eta_{i t}(G) \leq \eta-\omega+1$. Further equality holds if and only if $\beta_{0}(G)=2$.

Proof: Let H be a maximum clique in G. Let $u \in V(H)$. Then $S=V(G)-V(H-u)$ is neighbourhood set of G. Since β_{0} $(G) \geq 2$ and H is a maximum clique, it follows that every maximum independent set of G intersects S. Hence S is an independent transversal neighbourhood set so that $\eta_{i t}(G) \leq n-\omega+1$.

Suppose $\eta_{i t}(G) \leq \eta-\omega+1$. Let H be a maximum clique in G. Let u and v be two adjacent vertices such that $u \in V(H)$ and $V \in V(G)-H(G)$. Then $N=\{u\} \bigcup[V(G)-V(H \bigcup v)]$ is a neighbourhood set of G with $|N|=\eta-\omega$. Since $\eta_{i t}(G)$ $=n-\omega+1$, there exists a β_{0} - set in G such that $N \bigcap S=\phi$ Hence S consists of the vertex u and a vertex $\omega \neq u$ in H, so that $\beta_{0}(G)=2$.

Theorem 7: Let l and m be two positive integers with $m \geq 2 l-1$. Then there exist a graph G on m vertices, such that $\eta_{i t}$ $(G)=l+1$.

Proof: Let $\mathrm{m}=2 l+r, r \geq-1$ and let H be any connected graph on l vertices.
Let $V(H)=\left\{v_{1}, v_{2} \ldots v_{1}\right)$. Let G be a graph obtained from H by attaching $r+1$ pendant edges at V_{1} and one edge at each V_{i} for $i \geq 2$. Let $u_{i}(i \geq 2)$ be the pendent vertex in G adjacent to V_{i} clearly $\eta(G)=l$ and $S=\left\{v_{1}, v_{2}, \ldots, v_{l}, u_{i}\right\}$ (u_{i} is any pendent vertex in G) is a $\eta_{i t}$ set of G. Further every maximal independent set of G intersect S and hence $\eta_{i t}(G)=|S|$ $=l+1$, also $|V(G)|=b$.

Theorem 8: For any non-complete graph G with $\delta(G) \geq 2$, we have $\eta_{i t}(G) \leq \alpha_{0}(G)$.
Proof: Let S be a β_{0} set of G. Then $V-S$ is a neighbourhood set of G , since, $G \neq K_{2}$ and $\delta(G) \geq 2$, there exists a vertex v in $V-S$ such that $|N(v) \cap S| \geq 2$. Let u and w be two neighbours of V in S, since $\delta(G) \geq 2$, it follows that every neighbourhood of v in S is adjacent to at least one vertex other than v in $V-S$ and hence $D=(V-S)-\{v\}$ is a neighbourhood set of $G-\{v\}$.

Then $D \bigcup\{w\}$ is an independent transversal neighbourhood set of G. This is because $(S-\{w\}) \bigcup\{v\}$ is the only set in the compliment of $D \bigcup\{w\}$, which is not an independent set, and hence $\eta_{i t}(G) \leq \eta-\beta_{0}(G)=\alpha_{0}(G)$.

Corollary 2: If G is a non-complete graph $\eta_{\mathrm{it}}(G)=\alpha_{0}(G)+1$, then $\eta(G)=\alpha_{0}(G)$.
Proof: Suppose $\eta_{i t}(G)=\alpha_{0}(G)+1$. It follows from theorem 8 and 4 that $\eta_{i t}(G) \leq \eta(G)+1$ and hence $\alpha_{0}(G) \leq \eta(G)$.
Also since it is always true that $\eta(G) \leq \alpha_{0}(G)$,
we have $\eta(G)=\alpha_{0}(G)$.
Theorem 9: For any graph $G, 1 \leq \eta_{i t}(G) \leq p$. Further $\eta_{i t}(G)=p$, if and only if $G=K_{p}$ or $\overline{K_{p}}$.
Proof: The inequalities are trivial. Suppose $\eta_{i t}(G)=p$. assume $G=K_{p}$ or $\overline{K_{p}}$. Then G has at least three vertices u, v and w such that u and v are adjacent and w is not adjacent to one of u, v.

Suppose w is not adjacent to u. This implies that $V-\{u\}$ is an independent transversal n-set of G and hence $\eta_{i t}(G) \leq p-$ 1 , which is a contradiction. This proves necessity, sufficient is obvious. The following are some interesting open problem
(1) Characterize graphs for which
(i) $\gamma_{i t}(G)=\eta_{i t}(G)$
(ii) $\gamma(\mathrm{G})=\gamma_{i t}(G)=\eta(G)=\eta_{i t}(G)$.

ACKNOWLEDGE

This research was supported by UGC-SAP, DRS 1. No. F. 510/2/DRS/2011 (SAP).

REFERENCES

[1]. G. Chartrand and L. Lesniak, Graphs and Diagrams (Fourth edition. CRC press, Boca Raton, 2005).
[2]. I.S Hamid, Independent transversal Domination in Graphs, Discussions Mathematicae Graph Theory 32(2012) 517.
[3]. T. W. Haynes, S.T. Hedeniemi and P.J. Slater, Domination in graphs: Advanced topics (Marcel Dekker, New York, 1998).
[4]. E. Sampath Kumar and P.S Neeralagi (1985). "The neighbourhood number of a graph". Indian J. Pure, Appl. math. 16(2), 126 - 132.

Source of support: UGC-SAP, DRS 1. No. F. 510/2/DRS/2011 (SAP), India, Conflict of interest: None Declared

[^0]: * Corresponding author: ${ }^{1}$ P. M. SHIVASWAMY*
 ${ }^{1}$ Department of Mathematics, B.M.S College of Engineering Bangalore - 560019, India

