Research Journal of Pure Algebra -3(1), 2013, Page: 62-66 Available online through www.rjpa.info ISSN 2248-9037

THE INDEPENDENT TRANSVERSAL NEIGHBOURHOOD NUMBER OF A GRAPH

¹P. M. SHIVASWAMY* & ²N. D. SONER

¹Department of Mathematics, B.M.S College of Engineering Bangalore – 560019, India ²Department of Studies in Mathematics, University of Mysore, Mysore – 570006, India

(Received on: 08-12-12; Revised & Accepted on: 23-01-13)

ABSTRACT

A set S of vertices in a graph **G** is a neighbourhood set of G if $G = \bigcup_{v \in S} \langle N[v] \rangle$ where $\langle N[v] \rangle$ is the subgraph of G induced by v and all points adjacent to v. A neighbourhood set $S \subseteq V$ of a graph G is said to be an independent transversal neighbourhood, if S intersects every maximum independent set of G. The minimum cardinality of an independent transversal neighbourhood set of G is called the independent transversal neighbourhood number of G and is denoted by $\eta_{ii}(G)$. In this paper we begin an investigation of this parameter.

Keywords: Neighbourhood set, Independent set, Independent transversal neighbourhood set.

2010 Mathematics Subject classification: 05C.

INTRODUCTION

By a graph G = (V, E), we mean a finite, undirected graph with neither loops nor multiple edges. For graph theoretic terminology we refer to the book by Chartrand and Lesniak [1].

In a graph G = (V, E), the open neighbourhood of a vertex $v \in V$ is $N(v) = \{x \in V : vx \in E\}$, the set of vertices adjacent to v. The closed neighbourhood is $N[v] = N(v) \bigcup \{v\}$. A clique in a graph G is a complete subgraph of G. The maximum order of clique in G is called the clique number and is denoted by $\omega(G)$ and clique of order $\omega(G)$ is called a maximum clique. The subgraph induced by a set $S \subseteq V$ is denoted by $\langle S \rangle$.

A set $D \subseteq V$ is a dominating set, if every vertex in V - D is adjacent to a vertex in D and the minimum cardinality of a dominating set is called the dominating number of G and is denoted by $\gamma(G)$. A survey of advanced topics in domination is given in the book by Haynes *et.al* [3].

Let deg (v) be the degree of vertex v and as usual δ (G), the minimum degree and (G), the maximum degree of a graph. α_0 (G) is the minimum number of vertices in a vertex cover of G. β_0 (G) is the minimum number of vertices in a maximal independent set of vertex of G. we employ the notation $\lceil x \rceil$ to denote the smallest integer greater than or

equal to x, and $\lfloor x \rfloor$ to denote the largest integer less than or equal to x.

A dominating set $S \subseteq V$ of a graph *G* is said to be an independent transversal dominating set, if *S* intersects every maximum independent set of *G*. The minimum cardinality of an independent transversal dominating set of *G* is called the independent transversal domination number of *G* and is denoted by $\gamma_{il}(G)$. This concept was introduced by Hamid in [2].

A set S of vertices in a graph G is a neighbourhood set of G if $G = \bigcup_{v \in S} \langle N[v] \rangle$ Where $\langle N[v] \rangle$ is a subgraph of G

induced by *v* and all points adjacent to *v*. The neighbourhood number $\eta(G)$ of a graph *G* equals the minimum number of vertices in a neighbourhood set of *G* [4]. In this paper we introduced another basic neighbourhood parameter namely independent transversal neighbourhood number and initiate the study of this new neighbourhood parameter.

A neighbourhood set $S \subseteq V$ of a graph *G* is said to be an independent transversal neighbourhood, if *S* intersects every maximum independent set of *G*. The minimum cardinality of an independent transversal neighbourhood set of *G* and is called an independent transversal neighbourhood number and denoted by $\eta_{ii}(G)$.

Research Journal of Pure Algebra-Vol.-3(1), Jan. - 2013

2. RESULTS

The following results are immediate

Proposition: 1

(i): For any graph *G*, γ(*G*) ≤ η(*G*) ≤ η_{it} (*G*).
 (ii): For any graph *G*, γ(*G*) ≤ γ_{it} (*G*) ≤ η_{it}(*G*).

Proposition: A [4] For any path P_p of order p, $\eta(P_p) = \lfloor \frac{p}{2} \rfloor$

Theorem: 2 For any path P_p of order P, $\eta_{it}(P_p) = \left\lfloor \frac{p}{2} \right\rfloor + 1$.

Proof: Let $P_p = (v_1, v_2, \dots, v_p)$. Then $S = \{V_{2i} : 1 \le i \le 2n\}$ is the *n*-set of P_p Further, $\langle V - S \rangle = \left\lfloor \frac{p}{2} \right\rfloor k_1$, and hence every independent set in V - S, contains at most $\left\lfloor \frac{p}{2} \right\rfloor$ vertices. Now since

 $\left\lfloor \frac{p}{2} \right\rfloor = \beta(P_p)$. It follows that $S \cup \{x\}$, where $x \in V - S$ is an independent transversal neighbourhood set of P_p .

Hence $\eta_{it}(P_p) = |S| + 1.$

$$= \frac{p}{2} + 1.$$

Since $\eta(\mathbf{P}_{p}) = \left\lfloor \frac{p}{2} \right\rfloor$

Proposition B. [4]: For any cycle C_p , with $p \ge 4$, $\eta(C_p) = \left\lceil \frac{p}{2} \right\rceil$

Theorem 3: For any cycle C_p of order P, $\eta_{ii}(C_p) = \left\lceil \frac{p}{2} \right\rceil + 1$.

Proof: Let $C_p = (v_1, v_2, \dots, v_p)$. Then we consider two cases.

Case (i): If *P* is odd then $S = \{v_1, v_3, v_5, \dots, v_{p-1}\}$ i.e., $S = \{v_{2i+1}: 0 \le i \le \frac{p-1}{2}\}$ is a *n*-set of C_p .

Now, since $\langle v - s \rangle = \left\lceil \frac{p}{2} \right\rceil k_1$ every independent set in *V*–*S* contains at most $\frac{p}{2}$ vertices and hence *V* – *S* contains β_0 -set.

Thus it follows that $S \bigcup \{u\}$ where $u \in V$ -S is an independent transversal neighbourhood set of C_p .

Hence
$$\eta_{ii}(C_p) = \eta(C_p) + 1$$
$$= \left\lceil \frac{p}{2} \right\rceil + 1$$

Case (ii): If P is even, then

 $s = \left\{ v_{2i} : 1 \le i \le \frac{p}{2} \right\}$ is a n-set of C_p and $\langle V - S \rangle = \left(\frac{P}{2}\right) k_1$, hence every independence set in V - S contains $\frac{p}{2}$ vertices so that V - S contains β_0 -set.

© 2013, RJPA. All Rights Reserved

Thus it follows that $S \bigcup \{u\}$ where $u \in V - S$ is an independent transversal neighbourhood set of C_p .

hence
$$\eta_{ii}(C_p) = |S \bigcup \{u\}|$$

= $n(C_p) + 1$
= $\frac{p}{2} + 1$.

From case (i) and (ii), we have $\eta_{ii}(C_p) = \left\lceil \frac{p}{2} \right\rceil + 1.$

Corollary 1: For any wheel W_p on p vertices $(P \neq 4) \eta_{it}(W_p) = \left\lceil \frac{p-1}{2} \right\rceil + 1.$

1.

Proof: Clearly,
$$\eta_{it}(W_p) = \eta_{it}(C_{p-1}).$$
$$= \left\lceil \frac{p-1}{2} \right\rceil +$$

Theorem 4: For any graph *G*, we have $\eta(G) \le \eta_{it}(G) \le \eta(G) + \delta(G)$.

Proof: Since an independent transversal neighbourhood set of *G* is a neighbourhood set, it follows that $\eta(G) \le \eta_{it}(G)$.

Now let u be a vertex in G with deg $(u) = \delta(G)$, and let S be a *n*-set in G. Then every maximum independent set of G contains a vertex of N (u), so that $S \bigcup N[u]$ is an independent transversal neighbourhood set of G. Also, since S intersect N [u] it follows that $|S \bigcup N(u)| \le \eta(G) + \delta(G)$ and hence the right inequalities follows.

Theorem 5: If G is a disconnected graph, with components G_1, G_2, \ldots, G_r , then

$$\eta_{it}(G) = \min_{1 \le i \le r} \left\{ \eta_{it}(G_i) + \sum_{j=1, j \ne i}^r \eta(G_j) \right\}.$$

Proof: Let $G = \bigcup_{i=1}^r G_i$

Suppose that N_1, N_2, \ldots, N_r are the maximum neighbourhood sets of the graphs G_1, G_2, \ldots, G_r respectively and S_1, S_2, \ldots S_r are the minimum independent transversal neighbourhood sets of G_1, G_2, \ldots, G_r .

Let $B_1, B_2 \dots, B_r$ be the maximum independent sets of G_1, G_2, \dots, G_r . Any independent transversal neighbourhood set $S_i, i = 1, \dots, r$ is intersect the set $\bigcup_{i=1}^r B_i$.

Hence $S_1 \bigcup_{i=2}^r N_i$, $S_2 \bigcup_{i=1,i\neq 2}^r N_i \dots S_r \bigcup_{j=1,j\neq r}^{r-1} N_j$ are all the independent transversal neighbourhood of *G* and the order of those sets will be,

$$\eta_{it}(G_{1}) + \sum_{i=2 \ j \neq 1} \eta(G_{j})$$

$$\eta_{it}(G_{2}) + \sum_{i=1 \ j \neq 2}^{r} \eta(G_{j})$$

$$\eta_{it}(G_{3}) + \sum_{i=1 \ j \neq 3}^{r} \eta(G_{j})$$

$$\vdots$$

$$\vdots$$

$$\eta_{it}(G_{i}) + \sum_{i=1 \ j \neq i}^{r} \eta(G_{j})$$

Since the minimum independent transversal neighbourhood set is one of the set $S_1 \bigcup_{i=1}^{n} N_i$ which has the minimum

cardinality.

Hence
$$\eta_{il}(G) = \min_{1 \le i \le r} \left\{ \eta_{il}(G_i) + \sum_{j=1, j \ne i}^r \eta(G_j) \right\}.$$

Theorem 6: For any non-complete graph *G* with clique number ω , η_{it} (*G*) $\leq \eta - \omega + 1$. Further equality holds if and only if β_0 (*G*) = 2.

Proof: Let *H* be a maximum clique in *G*. Let $u \in V(H)$. Then S = V(G) - V(H-u) is neighbourhood set of *G*. Since β_0 $(G) \ge 2$ and *H* is a maximum clique, it follows that every maximum independent set of *G* intersects *S*. Hence *S* is an independent transversal neighbourhood set so that $\eta_{it}(G) \le n - \omega + 1$.

Suppose $\eta_{it}(G) \leq \eta - \omega + 1$. Let *H* be a maximum clique in *G*. Let *u* and *v* be two adjacent vertices such that $u \in V(H)$ and $V \in V(G) - H(G)$. Then $N = \{u\} \bigcup [V(G) - V(H \bigcup v)]$ is a neighbourhood set of *G* with $|N| = \eta - \omega$. Since $\eta_{it}(G) = n - \omega + 1$, there exists a β_0 - set in *G* such that $N \bigcap S = \phi$ Hence *S* consists of the vertex *u* and a vertex $\omega \neq u$ in *H*, so that $\beta_0(G) = 2$.

Theorem 7: Let *l* and m be two positive integers with $m \ge 2l - 1$. Then there exist a graph *G* on m vertices, such that η_{it} (*G*) = l + 1.

Proof: Let m = 2l + r, $r \ge -1$ and let H be any connected graph on *l* vertices.

Let $V(H) = \{v_1, v_2, ..., v_l\}$. Let *G* be a graph obtained from H by attaching r + 1 pendant edges at V_1 and one edge at each V_i for $i \ge 2$. Let u_i ($i \ge 2$) be the pendent vertex in *G* adjacent to V_i clearly $\eta(G) = l$ and $S = \{v_1, v_2, ..., v_b, u_i\}$ (u_i is any pendent vertex in *G*) is a η_{ii} set of *G*. Further every maximal independent set of *G* intersect *S* and hence $\eta_{ii}(G) = |S| = l + 1$, also |V(G)| = b.

Theorem 8: For any non-complete graph *G* with $\delta(G) \ge 2$, we have $\eta_{it}(G) \le \alpha_0(G)$.

Proof: Let S be a β_0 set of G. Then V - S is a neighbourhood set of G, since, $G \neq K_2$ and $\delta(G) \ge 2$, there exists a vertex v in V - S such that $|N(v) \bigcap S| \ge 2$. Let u and w be two neighbours of V in S, since $\delta(G) \ge 2$, it follows that every neighbourhood of v in S is adjacent to at least one vertex other than v in V - S and hence $D = (V - S) - \{v\}$ is a neighbourhood set of $G - \{v\}$.

Then $D \bigcup \{w\}$ is an independent transversal neighbourhood set of *G*. This is because $(S - \{w\}) \bigcup \{v\}$ is the only set in the compliment of $D \bigcup \{w\}$, which is not an independent set, and hence $\eta_{it}(G) \le \eta - \beta_0(G) = \alpha_0(G)$.

Corollary 2: If *G* is a non-complete graph $\eta_{it}(G) = \alpha_0(G) + 1$, then $\eta(G) = \alpha_0(G)$.

Proof: Suppose $\eta_{it}(G) = \alpha_0(G) + 1$. It follows from theorem 8 and 4 that $\eta_{it}(G) \le \eta(G) + 1$ and hence $\alpha_0(G) \le \eta(G)$.

Also since it is always true that η (*G*) $\leq \alpha_0$ (*G*),

we have $\eta(G) = \alpha_0(G)$.

Theorem 9: For any graph G, $1 \le \eta_{it}$ (G) $\le p$. Further $\eta_{it}(G) = p$, if and only if $G = K_p$ or $\overline{K_p}$.

Proof: The inequalities are trivial. Suppose $\eta_{it}(G) = p$. assume $G = K_p$ or $\overline{K_p}$. Then *G* has at least three vertices *u*, *v* and *w* such that *u* and *v* are adjacent and *w* is not adjacent to one of *u*, *v*.

Suppose *w* is not adjacent to *u*. This implies that $V - \{u\}$ is an independent transversal *n*-set of *G* and hence $\eta_{ii}(G) \le p - 1$, which is a contradiction. This proves necessity, sufficient is obvious. The following are some interesting open problem

(1) Characterize graphs for which

(i)
$$\gamma_{it}(G) = \eta_{it}(G)$$

(ii) $\gamma(G) = \gamma_{it}(G) = \eta(G) = \eta_{it}(G)$.

ACKNOWLEDGE

This research was supported by UGC-SAP, DRS 1. No. F. 510/2/DRS/2011 (SAP).

REFERENCES

[1]. G. Chartrand and L. Lesniak, Graphs and Diagrams (Fourth edition. CRC press, Boca Raton, 2005).

[2]. I.S Hamid, Independent transversal Domination in Graphs, Discussions Mathematicae Graph Theory 32(2012) 5-17.

[3]. T. W. Haynes, S.T. Hedeniemi and P.J. Slater, Domination in graphs: Advanced topics (Marcel Dekker, New York, 1998).

[4]. E. Sampath Kumar and P.S Neeralagi (1985). "The neighbourhood number of a graph". Indian J. Pure, Appl. math. 16(2), 126 – 132.

Source of support: UGC-SAP, DRS 1. No. F. 510/2/DRS/2011 (SAP), India, Conflict of interest: None Declared