Research Journal of Pure Algebra -3(1), 2013, Page: 1-7 Available online through www.rjpa.info

FIXED POINT THEOREMS IN DISLOCATED QUASI METRIC SPACES USING THE NOTION OF A- CONTRACTIONS

K. P. R. Sastry¹, S. Kalesha Vali², Ch. Srinivasa Rao³ and M. A. Rahamatulla^{4*}

¹8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatanam - 530 017, India

²Department of Mathematics, GITAM University, Visakhapatnam - 530 045, India

³Department of Mathematics, Mrs. A.V.N. College, Visakhapatnam -530 001, India

⁴Department of Mathematics, Al -Aman College of Engineering, Visakhapatnam – 531 173, India

(Received on: 15-11-12; Revised & Accepted on: 08-12-12)

ABSTRACT

A fixed point theorem for a self map T (not necessarily continuous) on a complete dq- metric space is proved. Incidentally, we show that a result of Rajesh. S., Ansari.Z.K. and Manish Sharma [12] in its revised from (Theorem 2.1) is not valid through an example. We also extend a fixed point theorem for two self maps on a dislocated metric space of Rajesh.et.al [12] to dislocated quasi metric spaces.

Mathematical Subject classification: 47 H 10, 54 H 25, 55M 20.

Key words: Dislocated metric space, dq-metric space, contractive condition, fixed point, A – contraction.

0. INTRODUCTION

The concept of dislocated metrics was studied under the name of metric domains in the context of domain theory in [2]. As a generalization of metrics where the self distance for any point need not to be equal to zero, Hitzler [6] and Hitzler and Seda [7], introduced the notion of dislocated metric spaces and generalized the celebrated Banach contraction principle in such spaces. These metrics play a very important role not only in topology but also in other branches of Science involving mathematics especially in logic programming and electronic engineering.

Zeyada.et.al [15] initiated the concept of dislocated quasi metric space and generalized the result of Hitzler and Seda [7] in dislocated quasi metric spaces. Recently, the study in such spaces is followed by Isufati [8] and C. T. Aage and J. N. Salunke [1]. In [8], the author proved some fixed point results in dislocated quasi metric spaces involving continuous contraction mappings which exist in the literature of usual complete metric space. In [1] the authors proved Kannan's [10] fixed point theorem and Lj. B. Ciric's [5] generalized contraction on complete metric spaces in the setting of dislocated quasi metric spaces. On the other hand, it is well known that Banach contraction principle is a pivotal result in the metric fixed point theory. This principle has been generalized by various authors by putting different types of contractive conditions. In the sequel, D.S. Jaggi [9] proved a fixed point theorem using rational type of contractive condition which generalized the Banach contraction principle in complete metric spaces.

In 2008 Akram.et.al [3] introduced a larger class of contractions, called A- contractions and showed that the class of A- contractions is a proper super class of Kannan's [10], Khan's [11], Bianchini's [4] and S. Reich [13], type contractions. Also, the authors proved fixed point theorems for A-contraction in complete metric spaces. Rajesh Srivastava.et.al [12] presented a version of D.S. Jaggi's [9] fixed point theorem in the context of dislocated quasi metric spaces. Further a common fixed point theorem is also obtained in complete dislocated metric space, using the notion of A-contraction in Rajesh.et.al [12].

In this paper, we observe that Theorem 3.1 of Rajesh.et.al [12] is not meaningful and provide a revised statement to make this theorem meaningful. Further we prove a fixed point theorem for a self map on a complete dislocated quasi metric space, satisfying a condition similar to the one in Rajesh.*et.al* [12]. We also extend a fixed point theorem for a A- contraction pair on a dislocated metric space (Theorem 3.7 of Rajesh.*et.al* [12]) to dislocated quasi metric spaces.

1. PRELIMINARIES

Definition 1.1: [14] Sastry. K.P.R., Vali. S.K., SrinivasaRao. Ch. and Rahamatulla. M.A. [14] Let X be a nonempty set and let $d: X \times X \rightarrow [0, \infty)$ be a function, called a distance function, satisfying one or more of

 $\begin{aligned} &d_1 - d_5 \\ &d_1: d(x, x) = 0 \ \forall \ x \in X, \\ &d_2: d(x, y) = d(y, x) = 0 \implies x = y \ \forall \ x, y \in X, \\ &d_3: d(x, y) = d(y, x) \ \forall \ x, y \in X, \\ &d_4: d(x, y) \le d(x, z) + d(z, y) \ \forall \ x, y, z \in X, \\ &d_5: d(x, y) \le \max\{d(x, z), d(z, y)\} \ \forall \ x, y, z \in X. \end{aligned}$

(i) If d satisfies d_2 , d_3 and d_4 then d is a called a dislocated metric and (X, d) is called a dislocated metric space.

(ii) If d satisfies d_1, d_2 and d_4 then d is called a quasi metric and (X, d) is called a quasi metric space.

(iii) If d satisfies d_2 and d_4 then d is called a dislocated quasi metric (or)dq-metric and (X, d) is called a dq-metric space.

(iv) If d satisfies d_1 , d_2 , d_3 and d_4 then d is called a metric and (X, d) is called a metric space.

Definition 1.2: A sequence $\{x_n\}$ in a dq-metric space (X, d) is called Cauchy if to $\epsilon > 0$, there exists $n_0 \in N$ such that for all $m, n \ge n_0$, $d(x_m, x_n) < \epsilon$.

Definition 1.3: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] A sequence $\{x_n\}$ in a dislocated quasi metric space(*X*, *d*) is said to be dislocated quasi converges (or) dq - converges to *x*, if

$$\lim_{n\to\infty} d(x_n, x) = \lim_{n\to\infty} d(x, x_n) = 0.$$

In this case x is called a dq – limit of $\{x_n\}$ and we write $x_n \to x$.

Proposition 1.4: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] Every convergent sequence is a dq- metric space is Cauchy.

Definition 1.5: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] A dq – metric space (X, d) is complete, if every Cauchy sequence in it is dq – convergent.

Lemma 1.6: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] Every subsequence of a dq – convergent sequence to a point x_0 is dq – convergent to x_0 .

Definition 1.7: Let (X, d), (Y, d') be dq - metric spaces. Suppose : $X \to Y$, we say that f is continuous, if

$$\{x_n\} \to x \Rightarrow fx_n \to fx \text{ in } Y.$$

Definition 1.8: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] Let (X, d) be a dq- metric space. A mapping $f : X \to X$ is called a contraction if there exists $0 \le \lambda < 1$ such that

$$d(f(x), f(y)) \leq \lambda d(x, y)$$
 for all $x, y \in X$.

Lemma 1.9: eyada.F.M. Hassan.G.H. and Ahmed.M.A. [15] Let (X, d) be a dq- metric space. If $f : X \to X$ is a contraction function, then $f^n(x_0)$ is a Cauchy sequence for each $x_0 \in X$.

Lemma 1.10: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] dq - limits in a dq - metric space are unique.

Theorem 1.11: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] Let (X, d) be a complete dq - metric space and let $f : X \to X$ be a continuous contraction function. Then f has a unique fixed point.

RAJESH.S. ANSARI.Z.K. AND MANISH SHARMA [12] CLAIMED THE FOLLOWING RESULT

Theorem 1.12 (Rajesh's., Ansari.Z.K. and Manish Sharma [12], Theorem 3.1) Let T be a continuous self map defined on a complete metric space (X, d). Further let T satisfy the following contraction condition

$$d(Tx, Ty) \le \alpha \frac{d(x, Tx)d(y, Ty)}{d(x, y)} + \beta d(x, y)$$
(1.12.1)

for all $x, y \in X$, $x \neq y$ and for some $\alpha, \beta \in [0,1)$ with $\alpha + \beta < 1$, Then T has unique fixed point.

Note 1.13: Condition (1.12.1) is meaningless if d(x, x) = 0. Also we note that $x \neq y$ and d(x, y) = 0 may happen in a dq - metric space.

Hence a revised statement of Theorem (1.12) to make this meaningful is given in Theorem (2.1).

Definition 1.14: Akram.M. Zafar.A.A. and Siddiqui.A.A. [3] A self map T on a metric space (X, d) satisfying

$$d(Tx, Ty) \le \alpha \max \left\{ \begin{array}{l} d(x, Tx) + d(y, Ty), \\ d(y, Ty) + d(x, y), \\ d(x, Tx) + d(x, y) \end{array} \right\}$$
(1.14.1)

for all $x, y \in X$ and some $\alpha, \beta \in [0, \frac{1}{2})$ is called a A- contraction.

Note 1.15: The notion of A-contraction can be extended in a natural way to dq – metric spaces also with metric space replaced by dq – metric space. We use this notion of A - contraction in dq – metric space in the next section.

2 . MAIN RESULTS WE REVISE THE STATEMENT OF THEOREM (1.12) AS FOLLOWS, TO MAKE IT MEANINGFUL.

Theorem 2.1: Let *T* be a continuous self mapping defined on a complete dq-metric space (X, d). Further let *T* satisfy the following contractive condition

$$d(Tx, Ty) \le \alpha \frac{d(x, Tx)d(y, Ty)}{d(x, y)} + \beta d(x, y)$$
(2.1.1)

for all $x, y \in X$, whenever $d(x, y) \neq 0$.

Then *T* has a unique fixed point.

WE OBSERVE THAT THEOREM 2.1 IS NOT VALID IN VIEW OF THE FOLLOWING EXAMPLE.

Example 2.2: Let $X = \{0,1\}$, *define* d(0,0) = 0, d(0,1) = 1, d(1,0) = 0, d(1,1) = 0, and define $T : X \to X$ as T0 = 1 and T1 = 0. Then (X, d) is a complete dq- metric space, T satisfies (2.1.1) and T has no fixed Point.

NOW WE PROVE A THEOREM, SIMILAR TO THEOREM 2.1 WITHOUT ASSUMING CONTINUITY OF T WHICH HOLDS GOOD IN A COMPLETE DQ – METRIC SPACE.

Theorem 2.3: Let T be a self map defined on a complete dq-metric space (X, d), let T satisfy the condition

$$d(Tx, Ty) \leq \alpha \frac{d(x, Tx)d(y, Ty)}{\max\{d(x, y), d(y, x)\}} + \beta d(x, y)$$
(2.3.1)

for all $x, y \in X$, whenever $d(x, y) \neq 0$ (or) $d(y, x) \neq 0$.

That is $d(x, y) + d(y, x) \neq 0$, where α , β are non – negitive and $\alpha + \beta < 1$. Then T has a unique fixed point.

Proof: Suppose

 $\max \{d(x, Tx), d(Tx, x)\} \neq 0$. Put y = Tx in (2.3.1). We get

$$d(Tx, TTx) \leq \alpha \frac{d(x, Tx)d(Tx, TTx)}{\max \{d(x, Tx), d(Tx, x)\}} + \beta d(x, Tx)$$

$$\leq \alpha d(Tx,TTx) + \beta d(x,Tx)$$

$$\therefore d(Tx, TTx) \leq \frac{\beta}{1-\alpha} d(x, Tx) \leq \frac{\beta}{1-\alpha} \max\{d(x, Tx), d(Tx, x)\}$$

Similarly we can show that (by replacing x with Tx and y with x in (2.3.1))

$$d(TTx,Tx) \leq \frac{\beta}{1-\alpha} \max\{d(x,Tx), d(Tx,x)\}$$

© 2013, RJPA. All Rights Reserved

$$\therefore \max\left\{d(Tx, TTx), d(TTx, Tx) \le \frac{\beta}{1-\alpha} \max\{d(x, Tx), d(Tx, x)\}\right\}$$
(2.3.2)

Let $x_0 \in X$. Define the sequence $\{x_n\}$ iteratively as follows:

 $x_1 = Tx_0, x_2 = Tx_1, \dots, x_{n+1} = Tx_n$

Suppose, for some n, $x_{n+1} = x_n$. Then $Tx_n = x_{n+1} = x_n$, so that x_n is a fixed point of T.

Now suppose that $x_n \neq x_{n+1}$ for n = 0,1,2,... Then, clearly

$$\max\{d(x_{n-1}, x_n), d(x_n, x_{n-1})\} \neq 0, for \ n = 1, 2, 3, \dots$$

Hence, by (2.3.2) $\max\{d(x_{n}, x_{n+1}), d(x_{n+1}, x_n)\} \le \frac{\beta}{1-\alpha} \max\{d(x_{n+1}, x_n), d(x_n, x_{n+1})\}$

Since $\frac{\beta}{1-\alpha} < 1$, this shows that $\leq \left(\frac{\beta}{1-\alpha}\right)^n \max\{d(x_0, x_1), d(x_1, x_0)\}$ and hence the sequence $\{x_n\}$ is a Cauchy sequence.

 $\therefore x_n \rightarrow u \text{ for some } u \in X$

(2.3.3)

Case (i): Suppose $\max\{d(x_n, u), d(u, x_n)\} \neq 0$ for large *n*. Then, by (2.3.1),

$$d(x_{n+1},Tu) = d(Tx_n,Tu)$$

$$\leq \alpha \frac{d(x_n,Tx_n)d(u,Tu)}{\max\{d(x_n,u),d(u,x_n)\}} + \beta d(x_n,u), if x_n \neq u \text{ for large } n$$

$$\rightarrow 0 \text{ as } n \rightarrow \infty.$$

Similarly

 $d(Tu, x_{n+1}) \rightarrow 0 \text{ as } n \rightarrow \infty.$

Hence
$$x_{n+1} \rightarrow Tu$$

But
$$x_{n+1} \to u$$
 (by (2.3.3))

Consequently by lemma 1.10, Tu = u.

Case (ii): Suppose $x_n = u$ for infinitely many . Then for such $n, x_{n+1} = Tx_n = Tu$. Then

 $d(x_{n}, x_{n+1}) < \epsilon$ and $d(x_{n+1}, x_n) < \epsilon$ for $n \ge N$. and hence $d(u, Tu) < \epsilon$ and $d(Tu, u) < \epsilon$.

This being true for every $\epsilon > 0$ follows that

$$d(u,Tu) = 0 = d(Tu,u)$$

Hence Tu = u. Thus u is a fixed point of T.

UNIQUENESS

First suppose that Tx = x. Then $d(x, x) \neq 0$. $\Rightarrow d(x, x) = d(Tx, Tx) \leq \alpha \frac{d(x, x)d(x, x)}{\max\{d(x, x), d(x, x)\}} + \beta d(x, x)$ $\leq \alpha d(x, x) + \beta d(x, x)$ $\leq (\alpha + \beta)d(x, x)$ < d(x, x), a contradiction,

 \therefore d(x, x) = 0, if x is a fixed point of T

Suppose that x and y in X are two distinct fixed point of T. That is Tx = x and Ty = y.

Then $\max\{d(x, y), d(y, x)\} \neq 0$ and hence by (2.3.1), we have

$$d(x,y) = d(Tx, Ty) \leq \alpha \frac{d(x,Tx)d(y,Ty)}{\max\{d(x,y),d(y,x)\}} + \beta d(x,y)$$

$$=\beta d(x,y)$$
 (by (2.3.4))

 $\therefore (1-\beta)d(x,y) \le 0$

 $\therefore d(x, y) = 0$, Similarly d(y, x) = 0.

 $\therefore d(x,y) = d(y,x) = 0 \implies x = y.$

Thus fixed point of T is unique. Thus the proof completes.

Corollary 2.4: Let *T* be a continuous self mapping defined on a complete dq – metric space (*X*, *d*). Further let *T* satisfy the contractive condition

$$d(Tx, Ty) \le \alpha \frac{d(x, Tx)d(y, Ty)}{d(x, y) + d(y, x)} + \beta d(x, y)$$
(2.4.1)

for all $x, y \in X$, $x \neq y$ and for some $\alpha, \beta \in [0,1)$ with $\alpha + \beta < 1$. Then T has a unique fixed point.

Proof: Since $\max\{d(x, y), d(y, x)\} \le d(x, y) + d(y, x)$, it follows that $(2.4.1) \Rightarrow (2.3.1)$

Hence corollary 2.4 follows from Theorem 2.3. In continuiation of Note 1.15, we introduce the notion of A – contraction for two maps on a complete dislocated quasi metric space as follows:

Definition 2.5: Let (X, d) be a complete dislocated quasi metric space. Suppose $S, T : X \to X$ are self maps satisfying

 $\max\{d(Sx,Ty),d(Ty,Sx)\} \le \alpha \max\left\{ \begin{array}{l} d(x,Tx) + d(y,Ty), \\ d(y,Ty) + d(x,y), \\ d(x,Tx) + d(x,y) \end{array} \right\} \text{ for all } x,y \in X \text{ and for some } \alpha \in [0,\frac{1}{2}]. \text{ Then}$

(S,T) is called A- contraction.

NOW WE EXTEND THE RESULT (THEOREM 3.7) OF [12] TO DISLOCATED QUASI METRIC SPACES AS FOLLOWS.

Theorem 2.6: Let (X, d) be a complete dislocated quasi metric space. Let $S, T : X \to X$ be continuous self mapping. Suppose (S, T) is a A- contraction. Then *S* and *T* have unique common fixed point.

Proof: Let $x_0 \in X$. Define the sequence $\{x_n\}$ by $x_1 = Sx_0, x_2 = Tx_1, ..., x_{2n} = Tx_{2n-1}, ..., x_{2n+1} = Sx_{2n},$ Now, for some $\alpha \in [0, \frac{1}{2})$,

$$d (Sx, TSx) \leq \alpha \max \begin{cases} d(x, Sx) + d(Sx, TSx), \\ d(Sx, TSx) + d(x, Sx), \\ d(x, Sx) + d(x, Sx), \end{cases}$$
$$= \alpha \max\{d(x, Sx) + d(Sx, TSx), 2d(x, Sx)\}$$
$$= \alpha \{d(x, Sx) + d(Sx, TSx)\} (or), 2\alpha d(x, Sx)$$
$$\therefore d(Sx, TSx) \leq \frac{\alpha}{1-\alpha} d(x, Sx) (or) 2\alpha d(x, Sx)$$
$$\therefore d(Sx, TSx) \leq 2\alpha d(x, Sx)$$

Now writing $x = x_{2n}$, we get

 $d(Sx_{2n}, TSx_{2n}) \leq 2\alpha d(x_{2n}, Sx_{2n})$

© 2013, RJPA. All Rights Reserved

i.e
$$d(x_{2n+1}, x_{2n+2}) \le 2\alpha d(x_{2n}, x_{2n+1})$$

 $d(x_{2n+1}, x_{2n+2}) \leq Kd(x_{2n}, x_{2n+1})$, where $K = 2\alpha < 1$

Similarly, we can show that

 $d(x_{2n}, x_{2n+1}) \leq Kd(x_{2n-1}, x_{2n})$

Hence $d(x_{n+1}, x_{n+2}) \le Kd(x_{n-1}, x_n)$ for n = 1, 2, 3, ...

Consequently, we get

 $d(x_{n+1}, x_{n+2}) \leq K^n d(x_0, x_1)$

Since $0 \le K < 1$, as $n \to \infty$, $K^n \to 0$.

Thus the sequence $\{x_n\}$ is a Cauchy sequence in the complete dislocated quasi metric space X. Therefore there exists a point $u \in X$ such that $x_n \to u$.

 $\therefore \text{ The subsequence } \{Sx_{2n}\} \to u \text{ and } \{Tx_{2n+1}\} \to u.$

Since S and T are continuous, so we have Su = u and Tu = u.

 \therefore *u* is a common fixed point of *S* and *T*.

UNIQUENESS

Let u and v be common fixed points of S and T Then by (1.14.1)

$$d(u, u) = d(Su, Tu) \le \alpha \max \left\{ \begin{array}{l} d(u, u) + d(u, u), \\ d(u, u) + d(u, u), \\ d(u, u) + d(u, u) \end{array} \right\}$$

 $\therefore d(u, u) \le 2\alpha d(u, u)$. Since $\alpha < \frac{1}{2}$, this shows that d(u, u) = 0,

Similarly, d(v, v) = 0.

Now
$$d(u, v) = d(Su, Tv) \le \alpha \max \begin{cases} d(u, u) + d(v, v), \\ d(v, v) + d(u, v), \\ d(u, u) + d(u, v) \end{cases}$$

$$= \alpha d(u, v)$$
. So that $d(u, v) = 0$.

Similarly we have d(v, u) = 0 and so u = v.

Hence S and T have a unique common fixed point.

Thus the proof completes.

Corollary 2.7 (Theorem 3.7 of [12]): Let (X, d) be a complete dislocated metric space. Let $S, T : X \to X$ be continuous mappings satisfying:

$$d(Sx,Ty)\} \le \alpha \max \left\{ \begin{array}{l} d(x,Sx) + d(y,Ty), \\ d(y,Ty) + d(x,y), \\ d(x,Sx) + d(x,y) \end{array} \right\} \text{ for all } x,y \in X \text{ and for some } \alpha \in [0,\frac{1}{2}).$$

Then S and T have common fixed point.

ACKNOWLEGEMENTS

The fourth author (M.A. Rahamatulla) is grateful to the authorities of Al-Aman College of Engineering and I.H. Faruqui Sir for granting permission to carry on this research.

© 2013, RJPA. All Rights Reserved

REFERENCES

[1] Aage C.T. and Salunke. J.N., The results on fixed points in dislocated and dq- metric space. Appl. Math. Sci, 2 (59): 2941-2948, (2008).

[2] Abramsky .S. and Jung.A., Domain theory in hand book of logic in Computer Science, Vol. 3. Newyork: Oxford Uni Press, (1994).

[3] Akram.M., Zafar.A.A. and Siddiqui. A.A., A general class of Contractions: A – Contraction. Novi Sad J.Math, 38 (1): 25 - 33, (2008).

[4] Bianchini.R., Su un Problema di S. Reich riguardante la teoria dei punti fissi, Boll. Un .Math. Ital, 5: 103-108, (1972).

[5] Ciric .Lj. B., A generalization of Banach's contraction principle, Proceedings of the American Mathematical Society, Vol 45, No: 2 (Aug. 1974).

[6] Hitzler.P., Generalized Metrics and Topology in Logic Programming Semantics. Ph.D. thesis, National University of Ireland, University College, Cork, (2001).

[7] Hitzler.P. and Seda.A.K., Dislocated Topologies., J. Electr. Engin; 51 (12/s):3 - 7, (2000).

[8] Isufati.A., Fixed point theorems in dislocated quasi metric space. Appl. Math. Sci, 4 (5): 217 – 223, (2010).

[9] Jaggi. D.S., Some unique fixed point theorems., Indian. J. Pure. Appl. Math., 8(2): 223-230, (1977).

[10] Kannan.R., Some results on fixed points. Bull. Cal. Math. Soc., 60: 71-76, (1965).

[11] Khan.M.S., On fixed point theorems. Math. Japonica. 23(2): 201 – 204, 1978/79.

[12] Rajesh.S., Ansari.Z.K. and Sharma.M., Some results on fixed points in dislocated and dislocated quasi metric spaces, Journal of Advanced studies in Topology Vol. 3, No: 1, 25 - 31, (2012).

[13] Reich.S., Kannan's fixed point theorem. Boll. un .Math. Ital, 4 (4): 1 -11, (1971).

[14] Sastry.K.P.R., Vali.S.K. SrinivasaRao.Ch. and Rahamatulla. M.A., A Coincidence point theorem for four self mappings in dislocated quasi metric spaces IJMA -3(8), 1-9, (2012).

[15] Zeyada.F.M., Hassan.G.H. and Ahmed.M.A., A Generalization of a fixed point theorem due to Hitzler and Seda in dq-metric spaces. The Arabian Journal for Sci. and Eng., 31 (1A): 111-114, (2005).

Source of support: Nil, Conflict of interest: None Declared