Research Journal of Pure Algebra -3(1), 2013, Page: 1-7
 Available online through www.rjpa.info ISSN 2248-9037

FIXED POINT THEOREMS IN DISLOCATED QUASI METRIC SPACES USING THE NOTION OF A- CONTRACTIONS

K. P. R. Sastry ${ }^{1}$, S. Kalesha Vali ${ }^{2}$, Ch. Srinivasa Rao ${ }^{3}$ and M. A. Rahamatulla ${ }^{4 *}$
${ }^{1}$ 8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatanam - 530 017, India
${ }^{2}$ Department of Mathematics, GITAM University, Visakhapatnam - 530 045, India
${ }^{3}$ Department of Mathematics, Mrs. A.V.N. College, Visakhapatnam -530 001, India
${ }^{4}$ Department of Mathematics, AI -Aman College of Engineering, Visakhapatnam - 531 173, India

(Received on: 15-11-12; Revised \& Accepted on: 08-12-12)

Abstract

A fixed point theorem for a self map T (not necessarily continuous) on a complete dq- metric space is proved. Incidentally, we show that a result of Rajesh. S., Ansari.Z.K. and Manish Sharma [12] in its revised from (Theorem 2.1) is not valid through an example . We also extend a fixed point theorem for two self maps on a dislocated metric space of Rajesh.et.al [12] to dislocated quasi metric spaces.

Mathematical Subject classification: 47 H 10, 54 H 25, 55M 20.
Key words: Dislocated metric space, dq-metric space, contractive condition, fixed point, A - contraction.

0. INTRODUCTION

The concept of dislocated metrics was studied under the name of metric domains in the context of domain theory in [2]. As a generalization of metrics where the self distance for any point need not to be equal to zero, Hitzler [6] and Hitzler and Seda [7], introduced the notion of dislocated metric spaces and generalized the celebrated Banach contraction principle in such spaces. These metrics play a very important role not only in topology but also in other branches of Science involving mathematics especially in logic programming and electronic engineering.

Zeyada.et.al [15] initiated the concept of dislocated quasi metric space and generalized the result of Hitzler and Seda [7] in dislocated quasi metric spaces. Recently, the study in such spaces is followed by Isufati [8] and C. T. Aage and J. N. Salunke [1]. In [8], the author proved some fixed point results in dislocated quasi metric spaces involving continuous contraction mappings which exist in the literature of usual complete metric space. In [1] the authors proved Kannan's [10] fixed point theorem and Lj. B. Ciric's [5] generalized contraction on complete metric spaces in the setting of dislocated quasi metric spaces. On the other hand, it is well known that Banach contraction principle is a pivotal result in the metric fixed point theory. This principle has been generalized by various authors by putting different types of contractive conditions. In the sequel, D.S. Jaggi [9] proved a fixed point theorem using rational type of contractive condition which generalized the Banach contraction principle in complete metric spaces.

In 2008 Akram.et.al [3] introduced a larger class of contractions, called A- contractions and showed that the class of A- contractions is a proper super class of Kannan's [10], Khan's [11], Bianchini's [4] and S. Reich [13], type contractions. Also, the authors proved fixed point theorems for A-contraction in complete metric spaces. Rajesh Srivastava.et.al [12] presented a version of D.S. Jaggi's [9] fixed point theorem in the context of dislocated quasi metric spaces. Further a common fixed point theorem is also obtained in complete dislocated metric space, using the notion of A-contraction in Rajesh.et.al [12].

In this paper, we observe that Theorem 3.1 of Rajesh.et.al [12] is not meaningful and provide a revised statement to make this theorem meaningful. Further we prove a fixed point theorem for a self map on a complete dislocated quasi metric space, satisfying a condition similar to the one in Rajesh.et.al [12]. We also extend a fixed point theorem for a A- contraction pair on a dislocated metric space (Theorem 3.7 of Rajesh.et.al [12]) to dislocated quasi metric spaces.

[^0]K. P. R. Sastry ${ }^{1}$, S. Kalesha Vali ${ }^{2}$, Ch. Srinivasa Rao ${ }^{3}$ and M. A. Rahamatulla ${ }^{4^{*}}$ / Fixed point theorems in dislocated quasi metric spaces using the notion of A- contractions/RJPA- 3(1), Jan.-2013.

1. PRELIMINARIES

Definition 1.1: [14] Sastry. K.P.R., Vali. S.K., SrinivasaRao. Ch. and Rahamatulla. M.A. [14] Let X be a nonempty set and let $d: X \times X \rightarrow[0, \infty)$ be a function, called a distance function, satisfying one or more of

$$
\begin{aligned}
& d_{1}-d_{5} \\
& d_{1}: d(x, x)=0 \forall x \in X, \\
& d_{2}: d(x, y)=d(y, x)=0 \quad \Rightarrow \quad x=y \forall x, y \in X, \\
& d_{3}: d(x, y)=d(y, x) \forall x, y \in X, \\
& d_{4}: d(x, y) \leq d(x, z)+d(z, y) \forall x, y, z \in X \\
& d_{5}: d(x, y) \leq \max \{d(x, z), d(z, y)\} \forall x, y, z \in X .
\end{aligned}
$$

(i) If d satisfies d_{2}, d_{3} and d_{4} then d is a called a dislocated metric and (X, d) is called a dislocated metric space.
(ii) If d satisfies d_{1}, d_{2} and d_{4} then d is called a quasi metric and (X, d) is called a quasi metric space.
(iii) If d satisfies d_{2} and d_{4} then d is called a dislocated quasi metric (or)dq-metric and (X, d) is called a dq-metric space.
(iv) If d satisfies d_{1}, d_{2}, d_{3} and d_{4} then d is called a metric and (X, d) is called a metric space.

Definition 1.2: A sequence $\left\{x_{n}\right\}$ in a dq-metric space (X, d) is called Cauchy if to $\epsilon>0$, there exists $n_{0} \in N$ such that for all $m, n \geq n_{0}, d\left(x_{m}, x_{n}\right)<\epsilon$.

Definition 1.3: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] A sequence $\left\{x_{n}\right\}$ in a dislocated quasi metric space (X, d) is said to be dislocated quasi converges (or) dq - converges to x, if

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=\lim _{n \rightarrow \infty} d\left(x, x_{n}\right)=0
$$

In this case x is called a dq - limit of $\left\{x_{n}\right\}$ and we write $x_{n} \rightarrow x$.
Proposition 1.4: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] Every convergent sequence is a dq- metric space is Cauchy.

Definition 1.5: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] A dq - metric space (X, d) is complete, if every Cauchy sequence in it is dq - convergent.

Lemma 1.6: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] Every subsequence of a dq - convergent sequence to a point x_{0} is dq - convergent to x_{0}.

Definition 1.7: Let $(X, d),\left(Y, d^{\prime}\right)$ be dq - metric spaces. Suppose : $X \rightarrow Y$, we say that f is continuous, if

$$
\left\{x_{n}\right\} \rightarrow x \Rightarrow f x_{n} \rightarrow f x \text { in } Y
$$

Definition 1.8: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] Let (X, d) be a dq- metric space. A mapping $f: X \rightarrow X$ is called a contraction if there exists $0 \leq \lambda<1$ such that

$$
d(f(x), f(y)) \leq \lambda d(x, y) \text { for all } x, y \in X
$$

Lemma 1.9: eyada.F.M. Hassan.G.H. and Ahmed.M.A. [15] Let (X, d) be a dq- metric space. If $f: X \rightarrow X$ is a contraction function, then $f^{n}\left(x_{0}\right)$ is a Cauchy sequence for each $x_{0} \in X$.

Lemma 1.10: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] dq - limits in a dq - metric space are unique.
Theorem 1.11: Zeyada.F.M., Hassan.G.H. and Ahmed.M.A. [15] Let (X, d) be a complete dq - metric space and let $f: X \rightarrow X$ be a continuous contraction function. Then f has a unique fixed point.

RAJESH.S. ANSARI.Z.K. AND MANISH SHARMA [12] CLAIMED THE FOLLOWING RESULT

Theorem 1.12 (Rajesh's., Ansari.Z.K. and Manish Sharma [12], Theorem 3.1) Let T be a continuous self map defined on a complete metric space (X, d). Further let T satisfy the following contraction condition
$d(T x, T y) \leq \alpha \frac{d(x, T x) d(y, T y)}{d(x, y)}+\beta d(x, y)$
for all $x, y \in X, x \neq y$ and for some $\alpha, \beta \in[0,1)$ with $\alpha+\beta<1$, Then T has unique fixed point.
K. P. R. Sastry ${ }^{1}$, S. Kalesha Vali ${ }^{2}$, Ch. Srinivasa Rao ${ }^{3}$ and M. A. Rahamatulla ${ }^{4^{*} / \text { Fixed point theorems in dislocated quasi metric }}$ spaces using the notion of A-contractions /RJPA- 3(1), Jan.-2013.

Note 1.13: Condition (1.12.1) is meaningless if $d(x, x)=0$. Also we note that $x \neq y$ and $d(x, y)=0$ may happen in a dq-metric space.

Hence a revised statement of Theorem (1.12) to make this meaningful is given in Theorem (2.1).
Definition 1.14: Akram.M. Zafar.A.A. and Siddiqui.A.A. [3] A self map T on a metric space (X, d) satisfying
$d(T x, T y) \leq \alpha \max \left\{\begin{array}{l}d(x, T x)+d(y, T y), \\ d(y, T y)+d(x, y), \\ d(x, T x)+d(x, y)\end{array}\right\}$
for all $x, y \in X$ and some $\alpha, \beta \in\left[0, \frac{1}{2}\right)$ is called a A- contraction.
Note 1.15: The notion of A-contraction can be extended in a natural way to dq - metric spaces also with metric space replaced by dq - metric space. We use this notion of A - contraction in dq - metric space in the next section.

2. MAIN RESULTS
 WE REVISE THE STATEMENT OF THEOREM (1.12) AS FOLLOWS, TO MAKE IT MEANINGFUL.

Theorem 2.1: Let T be a continuous self mapping defined on a complete dq-metric space (X, d). Further let T satisfy the following contractive condition
$d(T x, T y) \leq \alpha \frac{d(x, T x) d(y, T y)}{d(x, y)}+\beta d(x, y)$
for all $x, y \in X$, whenever $d(x, y) \neq 0$.
Then T has a unique fixed point.

WE OBSERVE THAT THEOREM 2.1 IS NOT VALID IN VIEW OF THE FOLLOWING EXAMPLE.

Example 2.2: Let $X=\{0,1\}$, define $d(0,0)=0, d(0,1)=1, d(1,0)=0, d(1,1)=0$, and define $T: X \rightarrow X$ as $T 0=1$ and $T 1=0$. Then (X, d) is a complete dq- metric space, T satisfies (2.1.1) and T has no fixed Point.

NOW WE PROVE A THEOREM, SIMILAR TO THEOREM 2.1 WITHOUT ASSUMING CONTINUITY OF T WHICH HOLDS GOOD IN A COMPLETE DQ - METRIC SPACE.

Theorem 2.3: Let T be a self map defined on a complete dq-metric space (X, d), let T satisfy the condition
$d(T x, T y) \leq \alpha \frac{d(x, T x) d(y, T y)}{\max \{d(x, y), d(y, x)\}}+\beta d(x, y)$
for all $x, y \in X$, whenever $d(x, y) \neq 0$ (or) $d(y, x) \neq 0$.
That is $d(x, y)+d(y, x) \neq 0$, where α, β are non - negitive and $\alpha+\beta<1$. Then T has a unique fixed point.
Proof: Suppose
$\max \{d(x, T x), d(T x, x)\} \neq 0$. Put $y=T x$ in (2.3.1). We get
$d(T x, T T x) \leq \alpha \frac{d(x, T x) d(T x, T T x)}{\max \{d(x, T x), d(T x, x)\}}+\beta d(x, T x)$

$$
\leq \alpha d(T x, T T x)+\beta d(x, T x)
$$

$\therefore d(T x, T T x) \leq \frac{\beta}{1-\alpha} d(x, T x) \leq \frac{\beta}{1-\alpha} \max \{d(x, T x), d(T x, x)\}$
Similarly we can show that (by replacing x with $T x$ and y with x in (2.3.1))
$d(T T x, T x) \leq \frac{\beta}{1-\alpha} \max \{d(x, T x), d(T x, x)\}$
K. P. R. Sastry ${ }^{1}$, S. Kalesha Vali ${ }^{2}$, Ch. Srinivasa Rao 3 and M. A. Rahamatulla ${ }^{4^{*}}$ / Fixed point theorems in dislocated quasi metric spaces using the notion of A- contractions/RJPA- 3(1), Jan.-2013.
$\therefore \max \left\{d(T x, T T x), d(T T x, T x) \leq \frac{\beta}{1-\alpha} \max \{d(x, T x), d(T x, x)\}\right.$
Let $x_{0} \in X$. Define the sequence $\left\{x_{n}\right\}$ iteratively as follows:
$x_{1}=T x_{0}, x_{2}=T x_{1}, \ldots \ldots, x_{n+1}=T x_{n}$.
Suppose, for some $n, x_{n+1}=x_{n}$. Then $T x_{n}=x_{n+1}=x_{n}$, so that x_{n} is a fixed point of T.
Now suppose that $x_{n} \neq x_{n+1}$ for $n=0,1,2, \ldots$. Then, clearly
$\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n-1}\right)\right\} \neq 0$, for $n=1,2,3, \ldots$.
Hence, by (2.3.2) $\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n}\right)\right\} \leq \frac{\beta}{1-\alpha} \max \left\{d\left(x_{n+1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}$
Since $\frac{\beta}{1-\alpha}<1$, this shows that

$$
\begin{equation*}
\leq\left(\frac{\beta}{1-\alpha}\right)^{n} \max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, x_{0}\right)\right\} \text { and hence the sequence }\left\{x_{n}\right\} \text { is a Cauchy sequence. } \tag{2.3.3}
\end{equation*}
$$

$\therefore x_{n} \rightarrow u$ for some $u \in X$
Case (i): Suppose $\max \left\{d\left(x_{n}, u\right), d\left(u, x_{n}\right)\right\} \neq 0$ for large n. Then, by (2.3.1),
$d\left(x_{n+1}, T u\right)=d\left(T x_{n}, T u\right)$

$$
\begin{aligned}
& \leq \alpha \frac{d\left(x_{n}, T x_{n}\right) d(u, T u)}{\max \left\{d\left(x_{n}, u\right), d\left(u, x_{n}\right)\right\}}+\beta d\left(x_{n}, u\right), \text { if } x_{n} \neq u \text { for large } n . \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Similarly
$d\left(T u, x_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Hence $x_{n+1} \rightarrow T u$
But $x_{n+1} \rightarrow u \quad$ (by (2.3.3))
Consequently by lemma $1.10, T u=u$.
Case (ii): Suppose $x_{n}=u$ for infinitely many. Then for such $n, x_{n+1}=T x_{n}=T u$. Then
$d\left(x_{n}, x_{n+1}\right)<\epsilon$ and $d\left(x_{n+1}, x_{n}\right)<\epsilon$ for $n \geq N$. and hence $d(u, T u)<\epsilon$ and $d(T u, u)<\epsilon$.
This being true for every $\epsilon>0$ follows that
$d(u, T u)=0=d(T u, u)$
Hence $T u=u$. Thus u is a fixed point of T.

UNIQUENESS

First suppose that $T x=x$. Then $d(x, x) \neq 0$.

$$
\begin{align*}
\Rightarrow d(x, x)=d(T x, T x) & \leq \alpha \frac{d(x, x) d(x, x)}{\max \{d(x, x), d(x, x)\}}+\beta d(x, x) \\
& \leq \alpha d(x, x)+\beta d(x, x) \\
& \leq(\alpha+\beta) d(x, x) \\
& <d(x, x), \text { a contradiction }, \tag{2.3.4}
\end{align*}
$$

$\therefore d(x, x)=0$, if x is a fixed point of T

Suppose that x and y in X are two distinct fixed point of T. That is $T x=x$ and $T y=y$.
Then $\max \{d(x, y), d(y, x)\} \neq 0$ and hence by (2.3.1), we have
$d(x, y)=d(T x, T y) \leq \alpha \frac{d(x, T x) d(y, T y)}{\max \{d(x, y), d(y, x)\}}+\beta d(x, y)$

$$
=\beta d(x, y) \quad(\text { by }(2.3 .4))
$$

$\therefore(1-\beta) d(x, y) \leq 0$
$\therefore d(x, y)=0$, Similarly $d(y, x)=0$.
$\therefore d(x, y)=d(y, x)=0 \Rightarrow x=y$.
Thus fixed point of T is unique. Thus the proof completes.
Corollary 2.4: Let T be a continuous self mapping defined on a complete dq - metric space (X, d). Further let T satisfy the contractive condition
$d(T x, T y) \leq \alpha \frac{d(x, T x) d(y, T y)}{d(x, y)+d(y, x)}+\beta d(x, y)$
for all $x, y \in X, x \neq y$ and for some $\alpha, \beta \in[0,1)$ with $\alpha+\beta<1$. Then T has a unique fixed point.
Proof: Since $\max \{d(x, y), d(y, x)\} \leq d(x, y)+d(y, x)$, it follows that (2.4.1) \Rightarrow (2.3.1)
Hence corollary 2.4 follows from Theorem 2.3. In continuiation of Note 1.15, we introduce the notion of A contraction for two maps on a complete dislocated quasi metric space as follows:

Definition 2.5: Let (X, d) be a complete dislocated quasi metric space. Suppose $S, T: X \rightarrow X$ are self maps satisfying $\max \{d(S x, T y), d(T y, S x)\} \leq \alpha \max \left\{\begin{array}{c}d(x, T x)+d(y, T y), \\ d(y, T y)+d(x, y), \\ d(x, T x)+d(x, y)\end{array}\right\}$ for all $x, y \in X$ and for some $\alpha \in\left[0, \frac{1}{2}\right)$. Then (S, T) is called A- contraction.

NOW WE EXTEND THE RESULT (THEOREM 3.7) OF [12] TO DISLOCATED QUASI METRIC SPACES AS FOLLOWS.

Theorem 2.6: Let (X, d) be a complete dislocated quasi metric space. Let $S, T: X \rightarrow X$ be continuous self mapping. Suppose (S, T) is a A- contraction. Then S and T have unique common fixed point.

Proof: Let $x_{0} \in X$. Define the sequence $\left\{x_{n}\right\}$ by $x_{1}=S x_{0}, x_{2}=T x_{1}, ., x_{2 n}=T x_{2 n-1}, \ldots, x_{2 n+1}=S x_{2 n}, \ldots \ldots$ Now, for some $\alpha \in\left[0, \frac{1}{2}\right.$),
$d(S x, T S x) \leq \alpha \max \left\{\begin{array}{c}d(x, S x)+d(S x, T S x), \\ d(S x, T S x)+d(x, S x), \\ d(x, S x)+d(x, S x)\end{array}\right\}$

$$
=\alpha \max \{d(x, S x)+d(S x, T S x), 2 d(x, S x)\}
$$

$$
=\alpha\{d(x, S x)+d(S x, T S x)\}(\text { or }), 2 \alpha d(x, S x)
$$

$\therefore d(S x, T S x) \leq \frac{\alpha}{1-\alpha} d(x, S x)$ (or) $2 \alpha d(x, S x)$
$\therefore d(S x, T S x) \leq 2 \alpha d(x, S x)$

Now writing $x=x_{2 n}$, we get
$d\left(S x_{2 n}, T S x_{2 n}\right) \leq 2 \alpha d\left(x_{2 n}, S x_{2 n}\right)$
K. P. R. Sastry ${ }^{1}$, S. Kalesha Vali ${ }^{2}$, Ch. Srinivasa Rao ${ }^{3}$ and M. A. Rahamatulla ${ }^{4^{*}}$ / Fixed point theorems in dislocated quasi metric spaces using the notion of A- contractions/RJPA- 3(1), Jan.-2013.
i.e $d\left(x_{2 n+1}, x_{2 n+2}\right) \leq 2 \alpha d\left(x_{2 n}, x_{2 n+1}\right)$
$\therefore d\left(x_{2 n+1}, x_{2 n+2}\right) \leq K d\left(x_{2 n}, x_{2 n+1}\right)$, where $K=2 \alpha<1$
Similarly, we can show that
$d\left(x_{2 n}, x_{2 n+1}\right) \leq K d\left(x_{2 n-1}, x_{2 n}\right)$
Hence $d\left(x_{n+1}, x_{n+2}\right) \leq K d\left(x_{n-1}, x_{n}\right)$ for $n=1,2,3, \ldots$.
Consequently, we get
$d\left(x_{n+1}, x_{n+2}\right) \leq K^{n} d\left(x_{0}, x_{1}\right)$
Since $0 \leq K<1$, as $n \rightarrow \infty, \quad K^{n} \rightarrow 0$.
Thus the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence in the complete dislocated quasi metric space X. Therefore there exists a point $u \in X$ such that $x_{n} \rightarrow u$.
\therefore The subsequence $\left\{S x_{2 n}\right\} \rightarrow u$ and $\left\{T x_{2 n+1}\right\} \rightarrow u$.
Since S and T are continuous, so we have $S u=u$ and $T u=u$.
$\therefore u$ is a common fixed point of S and T.

UNIQUENESS

Let u and v be common fixed points of S and T Then by (1.14.1)
$d(u, u)=d(S u, T u) \leq \alpha \max \left\{\begin{array}{l}d(u, u)+d(u, u), \\ d(u, u)+d(u, u), \\ d(u, u)+d(u, u)\end{array}\right\}$
$\therefore d(u, u) \leq 2 \alpha d(u, u)$. Since $\alpha<\frac{1}{2}$, this shows that $d(u, u)=0$,
Similarly, $d(v, v)=0$.
Now $d(u, v)=d(S u, T v) \leq \alpha \max \left\{\begin{array}{c}d(u, u)+d(v, v), \\ d(v, v)+d(u, v), \\ d(u, u)+d(u, v)\end{array}\right\}$

$$
=\alpha d(u, v) . \text { So that } d(u, v)=0
$$

Similarly we have $d(v, u)=0$ and so $u=v$.
Hence S and T have a unique common fixed point.
Thus the proof completes.
Corollary 2.7 (Theorem 3.7 of [12]): Let (X, d) be a complete dislocated metric space. Let $S, T: X \rightarrow X$ be continuous mappings satisfying:
$d(S x, T y)\} \leq \alpha \max \left\{\begin{array}{l}d(x, S x)+d(y, T y), \\ d(y, T y)+d(x, y), \\ d(x, S x)+d(x, y)\end{array}\right\}$ for all $x, y \in X$ and for some $\alpha \in\left[0, \frac{1}{2}\right)$.
Then S and T have common fixed point.

ACKNOWLEGEMENTS

The fourth author (M.A. Rahamatulla) is grateful to the authorities of Al-Aman College of Engineering and I.H. Faruqui Sir for granting permission to carry on this research.

K. P. R. Sastry ${ }^{1}$, S. Kalesha Vali ${ }^{2}$, Ch. Srinivasa Rao ${ }^{3}$ and M. A. Rahamatulla ${ }^{4^{*}}$ / Fixed point theorems in dislocated quasi metric spaces using the notion of A-contractions/RJPA- 3(1), Jan.-2013.

REFERENCES

[1] Aage C.T. and Salunke. J.N., The results on fixed points in dislocated and dq- metric space. Appl. Math. Sci, 2 (59): 2941-2948, (2008).
[2] Abramsky .S. and Jung.A., Domain theory in hand book of logic in Computer Science, Vol. 3. Newyork: Oxford Uni Press, (1994).
[3] Akram.M., Zafar.A.A. and Siddiqui. A.A., A general class of Contractions: A - Contraction. Novi Sad J.Math, 38 (1): 25 - 33, (2008).
[4] Bianchini.R., Su un Problema di S. Reich riguardante la teoria dei punti fissi, Boll. Un .Math. Ital, 5: 103-108, (1972).
[5] Ciric .Lj. B., A generalization of Banach's contraction principle, Proceedings of the American Mathematical Society, Vol 45, No: 2 (Aug. 1974).
[6] Hitzler.P., Generalized Metrics and Topology in Logic Programming Semantics. Ph.D. thesis, National University of Ireland, University College, Cork, (2001).
[7] Hitzler.P. and Seda.A.K., Dislocated Topologies., J. Electr. Engin; 51 (12/s):3 - 7, (2000).
[8] Isufati.A., Fixed point theorems in dislocated quasi metric space. Appl. Math. Sci, 4 (5): 217 - 223, (2010).
[9] Jaggi. D.S., Some unique fixed point theorems., Indian. J. Pure. Appl. Math., 8(2): 223-230, (1977).
[10] Kannan.R., Some results on fixed points. Bull. Cal. Math. Soc., 60: 71-76, (1965).
[11] Khan.M.S., On fixed point theorems. Math. Japonica. 23(2): 201 - 204, 1978/79.
[12] Rajesh.S., Ansari.Z.K. and Sharma.M., Some results on fixed points in dislocated and dislocated quasi metric spaces , Journal of Advanced studies in Topology Vol. 3, No: 1, 25 - 31, (2012).
[13] Reich.S., Kannan's fixed point theorem. Boll. un .Math. Ital, 4 (4): 1 -11, (1971).
[14] Sastry.K.P.R., Vali.S.K. SrinivasaRao.Ch. and Rahamatulla. M.A., A Coincidence point theorem for four self mappings in dislocated quasi metric spaces IJMA -3(8), 1-9, (2012).
[15] Zeyada.F.M., Hassan.G.H. and Ahmed.M.A., A Generalization of a fixed point theorem due to Hitzler and Seda in dq-metric spaces. The Arabian Journal for Sci. and Eng., 31 (1A): 111-114, (2005).

Source of support: Nil, Conflict of interest: None Declared

[^0]: * Corresponding author: M. A. Rahamatulla ${ }^{4 *}$
 ${ }^{4}$ Department of Mathematics, AI -Aman College of Engineering, Visakhapatnam - 531 173, India

