Research Journal of Pure Algebra -2(12), 2012, Page: 382-386 Available online through www.rjpa.info ISSN 2248-9037

S2-NEAR SUBTRACTION SEMIGROUPS

¹S. Seyadali Fathima* & ²R. Balakrishnan

¹Department of Mathematics, Sadakathullah Appa College, Tirunelveli – 627 002, Tamilnadu, India ²Department of Mathematics, V.O. Chidambaram College, Thoothukudi-628 008, Tamilnadu, India

(Received on: 22-11-12; Revised & Accepted on: 08-12-12)

ABSTRACT

A near subtraction semigroup X is said to be $S_1[10]$ if for every $a \in X$, there exists $x \in X^* = X - \{0\}$ such that axa = xa. Closely following this, we introduce in this paper the concept of S_2 -near subtraction semigroups. A near subtraction semigroup X is said to be an S_2 -near subtraction semigroup if, for every $a \in X$, there exists $x \in X^*$ such that axa = ax. Further by generalizing this, we introduce strong S_2 -near subtraction semigroups. That is, Near subtraction semigroups in which aba = ab for all $a, b \in X$. We also discuss some of their properties.

Mathematics Subject Classification: 06F35

Keywords: S_2 -Near subtraction semigroup, Boolean near subtraction semigroup, S(S')-near subtraction semigroups. Nil near subtraction semigroup, left right identity, X-system, zero divisors,

1.1 INTRODUCTION

A non empty set X together with a binary operation (-) is said to be a subtraction algebra if it satisfies the following axioms:

(i) x - (y - x) = x(ii) x - (x - y) = y - (y - x)(iii) (x - y) - z = (x - z) - y for every $x, y, z \in X$.

A non empty set X together with two binary operations '- ' and ' · ' is said to be a right near subtraction semigroup if it satisfies the following:

(i) (X, -) is a subtraction algebra.

- (ii) (X, \cdot) is a semigroup.
- (iii) $(x-y) \cdot z = x \cdot z y \cdot z$ for all $x, y, z \in X$.

We shall henceforth write xy for $x \cdot y$ for any two elements x, y of X.

Throughout this paper, X stands for a (right) near subtraction semigroup $(X, -, \cdot)$ with at least two elements. The subtraction determines an order relation on $X : a \le b \Leftrightarrow a-b=0$ where 0 = a-a is an element that does not depend on the choice of $a \in X$. In X, 0-x = 0 and 0x = 0 for all $x \in X$.

As in [5] and [6] we define the following: A near subtraction semigroup X is said to have (i) IFP (Insertion of Factors Property) if for a, b in X, $ab = 0 \Rightarrow axb = 0$ for all $x \in X$ (ii) (*, *IFP*) if X has IFP and $ab = 0 \Rightarrow ba = 0$ for $a, b \in X$ (iii) strong IFP if for all ideals I of X, $xy \in I \Rightarrow xny \in I$ for all n in X.

For $A, B \subset X$ we define, $AB = \{ab \mid a \in A, b \in B\}$. we say that a subset Y of X which is closed under '-' and $XY \subset Y$ is an X-system and if in addition $YX \subset Y$ it is called an invariant X-system.

As in [6] and [9], if there exists a map $f: X \to X$ such that a = af(a)a for all a in X, then f is called a mate function for X. We say that X is an S(S') near subtraction semigroup if $a \in Xa(aX)$ for all $a \in X$.

1.2 NOTATIONS

- a) An element $e \in X$ is said to be (i) idempotent if $e^2 = e$ (ii) nilpotent if $e^k = 0$ for some positive integer k (iii) left identity e.a = a for every $a \in X$.
- b) E denotes the set of all idempotents of X.
- c) L denotes the set of all nilpotent elements of X.
- d) If $a^2 = 0 \Rightarrow a = 0$ for all $a \in X$, then X has no non-zero nilpotent elements, as in Problem 14 p-9 of [4].
- e) $X_d = \{n \in X \mid n(x-y) = nx ny, \text{ for all } x, y \in X\}$ the set of all distributive elements of X.
- f) The centre of X is defined as $C(X) = \{a \in X \mid ax = xa \text{ for all } x \in X\}.$

For definitions and notations used but left undefined in this paper we refer to Pilz [5].

2. S2-NEAR SUBTRACTION SEMIGROUPS

Let us now give the definition of S_2 -near subtraction semigroups.

Definition 2.1: We say that X is an S_2 -near subtraction semigroup if for every $a \in X$, there exists $x \in X^*$ such that axa = ax.

Example 2.2: (i) Let $X = \{0, a, b, 1\}$ in which '- ' and '.' are defined by

_	0	а	b	1			а		
0	0	0	0	0	 0	0	0	0	
а	а	0	1	b	a	а	а	а	
b	b	0	0	b	b	а	0	1	
1	1	0	1	0	1	0	а	b	

This is an S_2 -near subtraction semigroup. [It may be seen that, aba = ab, bab = ba, 0a0 = 0a, 1b1 = 1b].

(ii) Every Boolean near subtraction semigroup is an S_2 -near subtraction semigroup.

Proposition 2.3: Every nil near subtraction semigroup is an S_2 -near subtraction semigroup.

Proof: Let X be a nil near subtraction semigroup and let $a \in X^*$. Then there exists a positive integer k > 1 such that $a^k = 0$. We set $x = a^{k-1} \neq 0$. Therefore ax = 0. Now axa = (ax)x = 0a = 0 = ax. That is axa = ax. Clearly 0x0 = 0x for any $x \in X^*$. Hence X is S_2 -near subtraction semigroup.

Remark 2.4: Converse of Proposition 2.3 is not valid. For example, we consider the near subtraction semigroup $(X, -, \cdot)$ where $X = \{0, a, b, c\}$ in which '- ' and ' · ' are defined as follows:

	0	а	b	С		0	а	b	С
0					0	0	0	0	0
a	а	0	а	а	а	0	0	0	а
b	b	b	0	b	b	0	0	0	b
С	С	С	С	0	С	0	0	0	С

This is an S_2 -near subtraction semigroup. But it is not a nil near subtraction semigroup. [Since $c^k \neq 0$, for any positive integer k].

Proposition 2.5: Let X be an S_2 -near subtraction semigroup. If X has no non-zero zero divisors then the following are true.

(i) Every ideal of X is an S_2 -near subtraction semigroup.

(ii) Every X -system of X is an S_2 -near subtraction semigroup, in their own right.

Proof: (i) Let *I* be an ideal of *X* and let *i* be a non-zero element of *I*. Since *X* is an S_2 -near subtraction semigroup, there exists $y \in X^*$ such that,

iyi

$$=iy$$
 (1)

If we set n = iy clearly $n \in I$. It follows from the hypothesis that $n \neq 0$. Now ini = i(iy)i = i(iy)(by (1)) = in. That is ini = in. Consequently I is an S_2 -near subtraction semigroup.

(ii) Let *M* be an *X*-system of *X* and let *m* be a non-zero element of *X*. since *X* is an S_2 -near subtraction semigroup, there exists $z \in X^*$ such that,

$$mzm = mz \tag{2}$$

If we set d = zm then $d \in XM$. Since M is an X-system of X, we get $d \in M$. Since X has no non-zero zero divisors it follows that $d \neq 0$. Now mdm = m(zm)m = (mzm)m = (mz)m (by (2)) = m(zm) = md. That is mdm = md. Consequently M is an S_2 -near subtraction semigroup.

3. STRONG S2-NEAR SUBTRACTION SEMIGROUPS

In this section, we define Strong S_2 -near subtraction semigroups and obtain its properties.

Definition 3.1: We say that X is a strong S_2 -near subtraction semigroup if aba = ab for all $a, b \in X$.

Example 3.2: (i) Let $X = \{0, a, b, 1\}$ in which '- ' and ' · ' are defined by

_	0	а	b	1			0	а	b	1
0	0	0	0	0	_	0	0	0	0	0
а	а	0	1	b		a	0	а	0	a
b	b	0	0	b		b	0	0	b	b
1	1	0	1	0		1	0	а	b	1

This is a strong S_2 -near subtraction semigroup.

(ii) Let $X = \{0, a, b, c\}$ in which '- ' and '.' are defined by

_	0	а	b	1			0	а	b	
0	0	0	0	0	0)	0	0	0	
а	а	0	1	b	а	a	a	а	а	
b	b	0	0	b	b	6	а	0	1	
1	1	0	1	0	1	1	0	а	b	

This is a not strong S_2 -near subtraction semigroup. It is worth noting that it is not zero symmetric.

Proposition 3.3: Every strong S_2 -near subtraction semigroup is an S_2 -near subtraction semigroup.

Proof: Follows from Definitions 3.1 and 2.1.

Remark 3.4: Converse of Proposition 3.3 is not valid. For an example, we consider near subtraction semigroup $X = \{0, a, b, c\}$ where we define '- ' and ' · ' as follows:

_	0	а	b	С			0	а	b	С
0	0	0	0	0	_	0	0	0	0	0
а	а	0	а	а		a	0	0	0	а
b						b	0	0	0	b
С	С	С	С	0		С	0	0	0	С

This is an S_2 -near subtraction semigroup. But it is not a strong S_2 -near subtraction semigroup. (Since $aca \neq ac$).

Theorem 3.5: Let X be a strong S_2 -near subtraction semigroup. Then the following are equivalent.

(i) X is an S-near subtraction semigroup.

(ii) X is an S'-near subtraction semigroup.

(iii) X is Boolean.

(iv) X admit mate function.

Proof: Since X is a strong S_2 -near subtraction semigroup, aba = ab for all $a, b \in X$.

© 2012, RJPA. All Rights Reserved

¹S. Seyadali Fathima^{*} & ²R. Balakrishnan/ S₂-NEAR SUBTRACTION SEMIGROUPS /RJPA- 2(12), Dec.-2012.

(i) \Rightarrow (ii): Let $x \in X$. Since X is an S -near subtraction semigroup, there exists $y \in X$ such that x = yx. This implies that xy = (yx)y = yx = x. That is $x = xy \in xX$. Thus X is an S'-near subtraction semigroup.

(ii) \Rightarrow (iii): Let $x \in X$. Since X is an S'-near subtraction semigroup, $x \in xX$. Then there exists $y \in X$ such that x = xy. This implies $x^2 = (xy)x = xyx = xy = x$. That is $x^2 = x$. Thus X is Boolean.

 $(iii) \Rightarrow (iv)$: Obvious.

 $(iv) \Rightarrow (i)$: Obvious.

Proposition 3.6: If X is a strong S_2 -near subtraction semigroup, then ab and $ba \in E$ for all $a, b \in X$.

Proof: Since X is a strong S_2 -near subtraction semigroup, xyx = xy for all $x, y \in X$. Let $a, b \in X^*$. Now $(ab)^2 = abab = a(bab) = a(ba) = aba = ab$. That is $(ab)^2 = ab \Rightarrow ab \in E$. Consequently $ab \in E$ for all $a, b \in X$. In the similar fashion we get $ba \in E$ for all $a, b \in X$.

Theorem 3.7: Let X be a strong S_2 -near subtraction semigroup. Then the following are true.

(i) Every left identity of X is a right identity of X.

(ii) xy is a right identity if and only if x and y are right identities for all $xy \in X$.

(iii) If $(0: xy) = \{0\}$ then xy is a right identity for all $x, y \in X$.

Proof: Since X is a strong S_2 -near subtraction semigroup, aba = ab for all $a, b \in X$.

(i) If *e* is the left identity of *X* then en = n for all $n \in X$. This implies $(en)e = ne \Rightarrow ene = ne \Rightarrow en = ne$ $\Rightarrow n = ne$. That is ne = n for all $n \in X$. Thus 'e' is the right identity of *X*.

(ii) Let $x, y \in X$. Assume that xy is a right identity. Therefore nxy = n for all $n \in X$. This implies $(nxy)x = nx \Rightarrow n(xy) = nx \Rightarrow n = nx$. That is nx = n. Since (nx)y = n, it follows that ny = n. Thus x and y are right identities.

Conversely, assume that x and y are right identities. Therefore zx = z and zy = z for all $z \in X$. Now z(xy) = (zx)y = z. That is z(xy) = z for all $z \in X$. Thus xy is a right identity.

(iii) Let $z \in X$. Now $(z - zxy)xy = zxy - z(xy)^2 = zxy - zxy$ [since $xy \in E$ by Proposition 3.6] = 0. That is (z - zxy)xy = 0. Therefore we get, $z - zxy \in (0 : xy)$. Since $(0 : xy) = \{0\}$, $z - zxy = 0 \Rightarrow z = zxy$. That is zxy = z. Thus xy is a right identity of X.

REFERENCES

- [1] Dheena. P and Satheesh Kumar. G, On Strongly regular near subtraction semigroups, *Common Korean Math. Soc.*, 22 (2007), 323-330.
- [2] Dheena. P and Satheesh Kumar. G, Weakly prime left ideals in near subtraction semigroups, *Common Korean Math. Soc.*, 23(2008), 325-331.
- [3] Von Neumann. J, On regular ring, Proc. Nat. Acad. USA, 22 (1936), 707-713.
- [4] McCoy N.H., The theory of rings, Mac Millan and Co., (1970).
- [5] Pilz Gunter, Near-Rings, North Holland (1983).
- [6] Seyadali Fathima. S and Balakrishnan. R, Mate Functions in near subtraction semigroups, *To appear in Mathematics Education*, Vol. XLVII, No. 2, June 2013, Bihar, India.
- [7] Seyadali Fathima. S and Balakrishnan. R, K(r,m) near subtraction semigroups, *International Journal of Algebra*, Vol. 5, 2011, No. 17, 827-834.

© 2012, RJPA. All Rights Reserved

¹S. Seyadali Fathima^{*} & ²R. Balakrishnan/ S₂-NEAR SUBTRACTION SEMIGROUPS /RJPA- 2(12), Dec.-2012.

- [8] Silviya. S, Balakrishnan. R and Tamilzh Chelvam. T, S₁ near-rings, *Mathematics Education*, Vol. XLVI, No. 3: (2012).
- [9] Suryanarayanan. S and Ganesan. N, Stable and Pesudo Stable near-rings, *Indian J. Pure and Appl. Math.*, 19(12), December 1988, 1206-1216.
- [10] Seyadali Fathima. S and Balakrishnan. R, S₁-Near Subtraction Semigroups, To appear in Ultra Scientist, Vol. 24, No. 3, 2012 December.

Source of support: Nil, Conflict of interest: None Declared