S₂-NEAR SUBTRACTION SEMIGROUPS

1S. Seyadali Fathima* & 2R. Balakrishnan

1Department of Mathematics, Sadakathullah Appa College, Tirunelveli – 627 002, Tamilnadu, India
2Department of Mathematics, V.O. Chidambaram College, Thoothukudi-628 008, Tamilnadu, India

(Received on: 22-11-12; Revised & Accepted on: 08-12-12)

ABSTRACT

A near subtraction semigroup X is said to be 1S₂ if for every 0 ∈ X, there exists x ∈ X such that axa = xa. Closely following this, we introduce in this paper the concept of 2S₂-near subtraction semigroups. A near subtraction semigroup X is said to be an 2S₂-near subtraction semigroup if, for every 0 ∈ X, there exists x ∈ X such that axa = xa. Further by generalizing this, we introduce strong 2S₂-near subtraction semigroups. That is, Near subtraction semigroups in which aba = ab for all a, b ∈ X. We also discuss some of their properties.

Mathematics Subject Classification: 06F35

Keywords: S₂-Near subtraction semigroup, Boolean near subtraction semigroup, S(S′)-near subtraction semigroups, Nil near subtraction semigroup, left right identity, X-system, zero divisors.

1.1 INTRODUCTION

A non empty set X together with a binary operation ‘ − ’ is said to be a subtraction algebra if it satisfies the following axioms:
(i) x − (y − x) = x
(ii) x − (x − y) = y − (y − x)
(iii) (x − y) − z = (x − z) − y for every x, y, z ∈ X.

A non empty set X together with two binary operations ‘ − ’ and ‘ · ’ is said to be a right near subtraction semigroup if it satisfies the following:
(i) (X, −) is a subtraction algebra.
(ii) (X, ·) is a semigroup.
(iii) (x − y) · z = x · z − y · z for all x, y, z ∈ X.

We shall henceforth write xy for x · y for any two elements x, y of X.

Throughout this paper, X stands for a (right) near subtraction semigroup (X, − , ·) with at least two elements. The subtraction determines an order relation on X: a ≤ b ⇔ a − b = 0 where 0 = a − a is an element that does not depend on the choice of a ∈ X. In X, 0 − x = 0 and 0x = 0 for all x ∈ X.

As in [5] and [6] we define the following: A near subtraction semigroup X is said to have (i) IFP (Insertion of Factors Property) if for a, b in X, ab = 0 ⇒ aba = 0 for all x ∈ X (ii) (*, IFP) if X has IFP and ab = 0 ⇒ ba = 0 for a, b ∈ X (iii) strong IFP if for all ideals I of X, xy ∈ I ⇒ xny ∈ I for all n in X.

For A, B ⊂ X we define, AB = {ab / a ∈ A, b ∈ B}. We say that a subset Y of X which is closed under ‘ − ’ and XY ⊂ Y is an X-system and if in addition YX ⊂ Y it is called an invariant X-system.

As in [6] and [9], if there exists a map f : X → X such that a = af(a)a for all a in X, then f is called a mate function for X. We say that X is an S(S′) near subtraction semigroup if a ∈ Xa(aX) for all a ∈ X.

Corresponding author: 1S. Seyadali Fathima

1Department of Mathematics, Sadakathullah Appa College, Tirunelveli – 627 002, Tamilnadu, India
1.2 NOTATIONS

a) An element \(e \in X \) is said to be (i) idempotent if \(e^2 = e \) (ii) nilpotent if \(e^k = 0 \) for some positive integer \(k \) (iii) left identity \(e.a = a \) for every \(a \in X \).

b) \(E \) denotes the set of all idempotents of \(X \).

c) \(L \) denotes the set of all nilpotent elements of \(X \).

d) If \(a^2 = 0 \Rightarrow a = 0 \) for all \(a \in X \), then \(X \) has no non-zero nilpotent elements, as in Problem 14 p-9 of [4].

e) \(X_d = \{ n \in X / n(x - y) = nx - ny, \text{ for all } x, y \in X \} \) - the set of all distributive elements of \(X \).

f) The centre of \(X \) is defined as \(xa = ax \) for all \(x \in X \).

For definitions and notations used but left undefined in this paper we refer to Pilz [5].

2. \(S_2 \)-NEAR SUBTRACTION SEMIGROUPS

Let us now give the definition of \(S_2 \)-near subtraction semigroups.

Definition 2.1: We say that \(X \) is an \(S_2 \)-near subtraction semigroup if for every \(a \in X \) there exists \(*Xa \in X \) such that \(ax = xa \).

Example 2.2: (i) Let \(X = \{0, a, b, 1\} \) in which ‘ − ’ and ‘ ⋅ ’ are defined by

<table>
<thead>
<tr>
<th>−</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

This is an \(S_2 \)-near subtraction semigroup. [It may be seen that, \(aba = ab, bab = ba, 0a0 = 0a, 1b1 = 1b \)].

(ii) Every Boolean near subtraction semigroup is an \(S_2 \)-near subtraction semigroup.

Proposition 2.3: Every nil near subtraction semigroup is an \(S_2 \)-near subtraction semigroup.

Proof: Let \(X \) be a nil near subtraction semigroup and let \(a \in X^* \). Then there exists a positive integer \(k > 1 \) such that \(a^k = 0 \). We set \(x = a^{k-1} \neq 0 \). Therefore \(ax = 0 \). Now \(ax = (ax)x = 0a = 0 = ax \). That is \(ax = ax \). Clearly \(0x0 = 0x \) for any \(x \in X^* \). Hence \(X \) is \(S_2 \)-near subtraction semigroup.

Remark 2.4: Converse of Proposition 2.3 is not valid. For example, we consider the near subtraction semigroup \((X, \cdot, \cdot\cdot)\) where \(X = \{0, a, b, c\} \) in which ‘ − ’ and ‘ ⋅ ’ are defined as follows:

<table>
<thead>
<tr>
<th>−</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
</tr>
</tbody>
</table>

This is an \(S_2 \)-near subtraction semigroup. But it is not a nil near subtraction semigroup. [Since \(c^4 \neq 0 \), for any positive integer \(k \)].

Proposition 2.5: Let \(X \) be an \(S_2 \)-near subtraction semigroup. If \(X \) has no non-zero zero divisors then the following are true.

(i) Every ideal of \(X \) is an \(S_2 \)-near subtraction semigroup.

(ii) Every \(X \)-system of \(X \) is an \(S_2 \)-near subtraction semigroup, in their own right.

Proof: (i) Let \(I \) be an ideal of \(X \) and let \(i \) be a non-zero element of \(I \). Since \(X \) is an \(S_2 \)-near subtraction semigroup, there exists \(y \in X^* \) such that, \(iy = iy \) (1)
If we set \(n = iy \) clearly \(n \in I \). It follows from the hypothesis that \(n \neq 0 \). Now \(ini = i(iy) = i(iyi) = i(iy) \) (by (1)) = \(in \). That is \(ini = in \). Consequently \(I \) is an \(S_2 \)-near subtraction semigroup.

(ii) Let \(M \) be an \(X \)-system of \(X \) and let \(m \) be a non-zero element of \(X \). Since \(X \) is an \(S_2 \)-near subtraction semigroup, there exists \(z \in X \) such that,

\[
mzm = mz = \text{by (2)}.
\]

If we set \(zmd = \) then \(m \in X \). Since \(M \) is an \(X \)-system of \(X \) we get \(Md \in X \). Since \(X \) has no non-zero zero divisors it follows that \(d \neq 0 \). Now \(mzm = (zm)m = (mzm)m = (mz)m = m(zm) = md \). That is \(mzm = md \). Consequently \(M \) is an \(S_2 \)-near subtraction semigroup.

3. STRONG \(S_2 \)-NEAR SUBTRACTION SEMIGROUPS

In this section, we define Strong \(S_2 \)-near subtraction semigroups and obtain its properties.

Definition 3.1: We say that \(X \) is a strong \(S_2 \)-near subtraction semigroup if

\[
aba = ab \quad \text{for all } a, b \in X.
\]

Example 3.2:

(i) Let \(X = \{0, a, b, 1\} \) in which ‘−’ and ‘⋅’ are defined by

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

This is a strong \(S_2 \)-near subtraction semigroup.

(ii) Let \(X = \{0, a, b, c\} \) in which ‘−’ and ‘⋅’ are defined by

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

This is a not strong \(S_2 \)-near subtraction semigroup. It is worth noting that it is not zero symmetric.

Proposition 3.3: Every strong \(S_2 \)-near subtraction semigroup is an \(S_2 \)-near subtraction semigroup.

Proof: Follows from Definitions 3.1 and 2.1.

Remark 3.4: Converse of Proposition 3.3 is not valid. For an example, we consider near subtraction semigroup \(X = \{0, a, b, c\} \) where we define ‘−’ and ‘⋅’ as follows:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
</tr>
</tbody>
</table>

This is an \(S_2 \)-near subtraction semigroup. But it is not a strong \(S_2 \)-near subtraction semigroup. (Since \(ac = a \neq ac \)).

Theorem 3.5: Let \(X \) be a strong \(S_2 \)-near subtraction semigroup. Then the following are equivalent.

(i) \(X \) is an \(S \)-near subtraction semigroup.
(ii) \(X \) is an \(S' \)-near subtraction semigroup.
(iii) \(X \) is Boolean.
(iv) \(X \) admit mate function.

Proof: Since \(X \) is a strong \(S_2 \)-near subtraction semigroup, \(aba = ab \) for all \(a, b \in X \).
(i) \Rightarrow (ii): Let $x \in X$. Since X is an S-near subtraction semigroup, there exists $y \in X$ such that $x = xy$. This implies that $xy = (yx)y = yx = x$. That is $x = xy \in xX$. Thus X is an S'-near subtraction semigroup.

(ii) \Rightarrow (iii): Let $x \in X$. Since X is an S'-near subtraction semigroup, $x \in xX$. Then there exists $y \in X$ such that $x = xy$. This implies $x^2 = (xy)x = xyx = xy = x$. That is $x^2 = x$. Thus X is Boolean.

(iii) \Rightarrow (iv): Obvious.

(iv) \Rightarrow (i): Obvious.

Proposition 3.6: If X is a strong S_2-near subtraction semigroup, then ab and $Eba \in E$ for all $X_{ba} \in X$.

Proof: Since X is a strong S_2-near subtraction semigroup, $xy = xy$ for all $x, y \in X$. Let $a, b \in X^*$. Now $(ab)^2 = abab = a(ba) = a(ba) = aba = ab$. That is $(ab)^2 = ab \Rightarrow ab \in E$. Consequently $ab \in E$ for all $a, b \in X$. In the similar fashion we get $ba \in E$ for all $a, b \in X$.

Theorem 3.7: Let X be a strong S_2-near subtraction semigroup. Then the following are true.

(i) Every left identity of X is a right identity of X.

(ii) xy is a right identity if and only if x and y are right identities for all $X_{xy} \in X$.

(iii) If $0 : xy = 0$ then xy is a right identity for all $x, y \in X$.

Proof: Since X is a strong S_2-near subtraction semigroup, $xy = xy$ for all $x, y \in X$. Let e be the left identity of X then $en = n$ for all $n \in X$. This implies $(en)e = ne \Rightarrow ene = ne \Rightarrow en = ne \Rightarrow n = ne$. That is $ne = n$ for all $n \in X$. Thus e is the right identity of X.

(ii) Let $x, y \in X$. Assume that xy is a right identity. Therefore $nxy = n$ for all $n \in X$. This implies $(nxy)x = nx \Rightarrow n(xy)x = nx \Rightarrow n(xy) = nx \Rightarrow n = nx$. That is $nx = n$. Since $(nx)y = n$, it follows that $ny = n$. Thus x and y are right identities.

Conversely, assume that x and y are right identities. Therefore $zx = z$ and $zy = z$ for all $z \in X$. Now $z(xy) = (zx)y = z$. That is $z(xy) = z$ for all $z \in X$. Thus xy is a right identity.

(iii) Let $z \in X$. Now $(z - zxy)xy = zxy - z(xy)^2 = zxy - zxy$ [since $xy \in E$ by Proposition 3.6] $= 0$. That is $(z - zxy)xy = 0$. Therefore we get, $z - zxy \in (0 : xy)$. Since $(0 : xy) = (0), z - zxy = 0 \Rightarrow z = zxy$. That is $zxy = z$. Thus xy is a right identity of X.

REFERENCES

Source of support: Nil, **Conflict of interest:** None Declared