Research Journal of Pure Algebra -2(11), 2012, Page: 332-337 Available online through www.rjpa.info

$\tau_i \tau_j$ - Q^{**} CLOSED SETS IN BITOPOLOGICAL SPACES

P. Padma¹* & S. Udayakumar²

¹Department of Science and Humanities, PRIST university, Kumbakonam, India ²Department of Mathematics, A.V.V.M. Sri Puspam College, Poondi, Tanjore, India

(Received on: 10-11-12; Revised & Accepted on: 26-11-12)

ABSTRACT

In the present paper, we introduced $\tau_i \tau_j - Q^{**}$ closed sets in bitopological spaces and studied its some of their bitopological properties. Also some relations are established with known generalized closed sets.

Keywords: $\tau_i \tau_i - Q^{**}$ closed, $\tau_i \tau_j - Q^{**}$ open sets.

2000 Mathematics Subject Classification: 54E55.

1. INTRODUCTION

A triple (X, τ_1, τ_2) where X is a non - empty set and τ_1, τ_2 are topologies on X is called a bitopological space and Kelly initiated the study of such spaces. Maheswari and prasad [11] introduced semi open sets in bitopological spaces in 1977.

Closed sets are fundamental objects in a topological space. For example one can define the topology on a set by using either the axioms for the closed sets or the Kuratowski closure axioms. In 1971, Levine [10] introduced the concept of generalized closed sets in topological spaces. Also he introduced the notion of semi open sets in topological spaces. Bhattacharyya and Lahiri [3] introduced a class of sets called semi generalized closed sets by means of semi open sets of Levine and obtained various topological properties.

In 1985, Fukutake [7] introduced the concepts of g - closed sets in bitopological spaces and after that several authors turned their attention towards generalizations of various concepts of topology by considering bitopological spaces.

In 1991, Chattopadhyay and Bandyopadhyay [2] introduced δ set. A subset A of a topological space is called δ set if int $(cl(A)) \subset cl(int(A))$.

In 2004 [23], Sheik john. M and Sundaram. P introduced g^* closed sets in bitopological spaces .The notion of Q^* - closed sets in a topological space was introduced by Murugalingam and Lalitha [12] in 2010.

Recently, P. Padma and S. Udayakumar [12] introduced the concept of $(\tau_1, \tau_2) * - Q^*$ closed sets in bitopological spaces

In the present paper, we introduced $\tau_i \tau_j$ -Q^{**} closed sets in bitopological spaces and studied its some of their bitopological properties. Also some relations are established with Known generalized closed sets.

2.1 PRELIMINARIES

Throughout this paper X and Y always represent nonempty bitopological spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) . For a subset A of X, $\tau_i - cl(A)$, $\tau_i - Q^*cl(A)$ (resp. $\tau_i - int(A)$. $\tau_i - Q^*int(A)$) represents closure of A and $Q^*closure$ of A (resp. interior of A, Q^* - interior of A) with respect to the topology τ_i . We shall now require the following known definitions.

Definition 2.2 - A set A of a bitopological space (X, τ_1, τ_2) is called

- a) $\tau_i \tau_j$ semi open if there exists an τ_i open set U such that $U \subseteq A \subseteq \tau_j$ cl (A). Equivalently, a set A is $\tau_i \tau_j$ semi open if $A \subset \tau_j$ cl (τ_i int (A))
- b) $\tau_i \tau_j$ semi closed if X A is $\tau_i \tau_j$ semi open.
- c) $\tau_i \tau_j$ generalized open ($\tau_i \tau_j$ g open) if X A is $\tau_i \tau_j$ generalized closed.
- d) $\tau_i \tau_j$ generalized closed ($\tau_i \tau_j$ g closed) if τ_j cl (A) \subseteq U whenever A \subseteq U and U is τ_i open in X.
- e) $\tau_i \tau_j$ generalized open ($\tau_i \tau_j$ g open) if X A is $\tau_1 \tau_2$ g closed.
- f) $\tau_i \tau_j$ semi generalized closed ($\tau_i \tau_j$ sg closed) if τ_j scl (A) \subseteq U whenever A \subseteq U and U is τ_i semi open in X.

Corresponding author: P. Padma¹

¹Department of Science and Humanities, PRIST university, Kumbakonam, India

Research Journal of Pure Algebra-2 (11), Nov. - 2012

P. Padma¹*&S. Udayakumar²/ $\tau_i \tau_j$ - Q^{**} CLOSED SETS IN BITOPOLOGICAL SPACES /RJPA- 2(11), Nov.-2012.

- g) $\tau_i \tau_j$ semi generalized open ($\tau_i \tau_j$ sg open) if X A is $\tau_i \tau_j$ sg closed.
- h) $\tau_i \tau_j$ generalized semi closed ($\tau_i \tau_j$ gs closed) if τ_2 cl (A) \subseteq U whenever A \subseteq U and U is τ_i open in X.
- i) $\tau_i \tau_j$ generalized semi open ($\tau_i \tau_j$ gs open) if X A is $\tau_i \tau_j$ gs closed.
- j) $\tau_i \tau_j$ regular open if $A = \tau_i$ int $[\tau_j$ cl (A)].
- k) $\tau_i \tau_j$ regular closed if $A = \tau_i cl [\tau_j int (A)]$.
- $l) \quad \tau_i\tau_j \text{-} g^* \text{ closed sets if } \tau_j \text{-} \text{ cl } (A) \subseteq U \text{ whenever } A \subseteq U \text{ and } U \text{ is } \tau_i \text{-} g \text{ open in } X.$
- m) $\tau_i \tau_j g^*$ open ($\tau_i \tau_j g^*$ open) if X A is $\tau_i \tau_j g^*$ closed.

3. $\tau_i \tau_j$ - Q^{**} CLOSED SETS

In this section, the concepts of $\tau_i \tau_j - Q^{**}$ closed sets is introduced and their basic properties in bitopological spaces are discussed. Recall that a set A os a bitopological space (X, τ_1, τ_2) is called $\tau_i \tau_j - Q^*$ closed if $\tau_i - int (A) = \phi$ and A is τ_j -closed. The family of all $\tau_i \tau_j - Q^{**}$ closed subsets of a bitopological space (X, τ_1, τ_2) is denoted by $(\tau_i, \tau_j) - Q^{**}$.

Definition 3.1- A subset A of a bitopological space (X, τ_1, τ_2) is called

- i) $\tau_i \tau_j Q^{**}$ closed if τ_i int (A) = ϕ and A is $\tau_j Q^*$ closed, where i, j = 1, 2 and i $\neq j$.
- ii) $\tau_i \tau_j Q^{**}$ open if X A is $\tau_i \tau_j Q^{**}$ closed in X, where i, j = 1, 2 and i $\neq j$.

Example 3.1. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{c\}\}, \tau_2 = \{\phi, X, \{b, c\}, \{c\}\}$. Then $\tau_j - Q^*$ closed sets are $\{a\}, \{a, b\}, \phi$. Clearly ϕ , $\{a, b\}$ and $\{a\}$ are $\tau_i \tau_j - Q^{**}$ closed.

Definition 3.2. Let (X, τ_1, τ_2) be a bitopological spaces. Let $A \subset X$. The intersection of all $\tau_i \tau_j - Q^{**}$ closed sets of X containing a subset A of X is called $\tau_i \tau_j - Q^{**}$ closure of A and is denoted by $\tau_i \tau_j - Q^{**}$ cl (A).

Definition 3.3. Let (X, τ_1, τ_2) be a bitopological spaces. Let $A \subset X$. The union of all $\tau_i \tau_j - Q^{**}$ open sets contained in a subset A of X is called $\tau_i \tau_j - Q^{**}$ interior of A and is denoted by $\tau_i \tau_j - Q^{**}$ int (A).

Remark 3.1. Since every $\tau_i \tau_j - Q^{**}$ closed is τ_j - closed and τ_j - closed set is $\tau_i \tau_j$ - g closed, $\tau_i \tau_j$ - sg closed, we have $\tau_i \tau_j$ - Q^{**} closed is $\tau_i \tau_j$ - g closed, $\tau_i \tau_j$ - g closed, $\tau_i \tau_j$ - sg closed. But the converse is not true in general. The following example supports our claim.

Example 3.4. In example 3.1, {c} $\tau_i \tau_i$ - g closed, $\tau_i \tau_i$ - sg closed and $\tau_i \tau_i$ - gs closed but not $\tau_i \tau_i$ - Q^{**} closed.

Remark 3.3. Since every $\tau_i \tau_j - Q^{**}$ closed set is $\tau_i \tau_j - Q^*$ closed. But the converse is not true in general. The following example supports our claim.

Example 3.5. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$. Then $\tau_j - Q^*$ closed sets are ϕ . Clearly $\{b, c\}$ is $\tau_i \tau_j - Q^*$ closed but it is not $\tau_i \tau_j - Q^*$ closed.

Proposition 3.1. If A $B \in (\tau_i, \tau_j) - Q^{**}$ then $A \cup B \in (\tau_i, \tau_j) - Q^{**}$.

Proof: Let A and B be (τ_i, τ_j) - Q^{**} closed sets in (X, τ_1, τ_2) .

Claim: $A \cup B$ be a (τ_i, τ_j) - Q** closed sets in (X, τ_1, τ_2) . i.e) to prove τ_i - int $(A \cup B) = \phi$ and A is τ_j - Q* closed.

Since, A and B be (τ_i, τ_j) - Q* closed sets in (X, τ_1, τ_2) we have τ_i - int $(A) = \phi$ and A is τ_j - Q* closed and τ_i - int $(B) = \phi$ and B is τ_j - Q* closed.

Since (X, τ_1, τ_2) be a bitopological space, we have finite union of $\tau_j - Q^*$ closed sets are $\tau_j - Q^*$ closed. $\Rightarrow \tau_i - \text{int} (A \cup B) = \phi$ and A is $\tau_j - Q^*$ closed. $\Rightarrow A \cup B$ is $(\tau_i, \tau_j) - Q^{**}$ closed sets in (X, τ_1, τ_2) . $\Rightarrow A \cup B \in (\tau_i, \tau_j) - Q^*$.

Proposition 3.2 - Every $\tau_i \tau_j$ - Q^{**} closed set is τ_j - closed.

Proof: Let A be a $\tau_i \tau_j$ - Q^{*} closed set in X. Then X – A is $\tau_i \tau_j$ - Q^{*} open.

We have to show that

A is $\tau_i \tau_j - Q^{**}$ closed.

© 2012, RJPA. All Rights Reserved

P. Padma¹*&S. Udayakumar²/ $\tau_i \tau_i - Q^{**}$ CLOSED SETS IN BITOPOLOGICAL SPACES /RJPA- 2(11), Nov.-2012.

Since every $\tau_i \tau_j$ - Q^{**}open set is τ_j - open, we have X – A is τ_j - open.

Thus, A is τ_i - closed.

Remark 3.5. The converse of the above proposition is not true in general ie) τ_i - closed is not $\tau_i \tau_i - Q^{**}$ closed.

Remark 3.6. $\tau_i \tau_j$ - regular closed sets and $\tau_i \tau_j$ - Q^{**} closed sets are independent of each other in general. It is proved in the following example.

Example 3.6. $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{b, c\}\}, \tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$. Then $\{a\}$ is $\tau_i \tau_j$ - regular closed but not $\tau_i \tau_j$ - Q^{**} closed set.

Remark 3.7. $\tau_i \tau_j - g^*$ closed sets and $\tau_i \tau_j - Q^{**}$ closed sets are independent of each other in general. It is proved in the following example.

Example 3.6. $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{c\}, \{a, c\}\}, \tau_2 = \{\phi, X, \{a\}\}$. Then $\{b\}$ is $\tau_i \tau_j$ - g*closed but not $\tau_i \tau_j$ - Q^{**} closed set.

Remark 3.8. $\tau_i \tau_j$ - g* closed sets and $\tau_i \tau_j$ - Q* closed sets are independent of each other in general. It is proved in the following example.

Example 3.7. $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{c\}, \{a, c\}\}, \tau_2 = \{\phi, X, \{a\}\}$. Then $\{b, c\}$ is $\tau_i \tau_j - g^*$ closed but not $\tau_i \tau_j - Q^*$ closed set.

Result 3.1. From the above results we conclude the following

Theorem 3.1. If A is $\tau_i \tau_j - Q^{**}$ closed then A is nowhere dense.

Proof: Since A is $\tau_i \tau_j - Q^{**}$ closed, we have τ_i - int (A) = ϕ and A is $\tau_j - Q^*$ closed.

Therefore,

 τ_j - cl $[\tau_i$ - int (A)] = ϕ .

Hence A is nowhere dense.

Theorem 3.2. Every $\tau_i \tau_i - Q^{**}$ closed set is $\tau_i \tau_i - \delta$ set.

Proof: Let A be $\tau_i \tau_j$ - Q^{**} closed.

Then τ_i - int (A) = ϕ and A is τ_i - Q* closed.

Consequently,

$$\begin{aligned} \tau_i - \operatorname{int} \left\{ \tau_j - \operatorname{cl} \left[\tau_i - \operatorname{int} \left(A \right) \right] \right\} &= \tau_i - \operatorname{int} \left\{ \tau_j - \operatorname{cl} \left(\phi \right) \right\} \\ &= \tau_i - \operatorname{int} \left(\phi \right) \\ &= \phi \ . \end{aligned}$$

Therefore, A is $\tau_i \tau_j$ - δ set.

Theorem 3.3.

a) Every τ_i τ_j - Q* closed set is τ_i τ_j - semi closed set.
b) Every τ_i τ_j - Q** closed set is τ_i τ_j - semi closed set.

Remark 3.7. But the converse of the assertions of above theorem are not true in general as can be seen in the following example.

© 2012, RJPA. All Rights Reserved

P. Padma¹*&S. Udayakumar²/ $\tau_i \tau_i - Q^{**}$ CLOSED SETS IN BITOPOLOGICAL SPACES /RJPA- 2(11), Nov.-2012.

Example 3.7. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b, c\}\}$ and $\tau_2 = \{\phi, X, \{a, c\}\}$. Then $\{a\}$ is a $\tau_i \tau_j$ - semi closed set, but not $\tau_i \tau_j$ - Q* closed and $\tau_i \tau_j$ - Q** closed.

Theorem 3.4. $(\tau_i \tau_j - Q^{**} \text{ int } A)^c = \tau_i \tau_j - Q^{**} \text{ cl } (A^c).$

 $\begin{array}{l} \textbf{Proof: } \tau_i\tau_j \text{-} Q^{**} \text{ int } A = \cup \{B/B \text{ is } \tau_i\tau_j \text{-} Q^{**} \text{ open and } B \subset A\}.\\ (\tau_i\tau_j \text{-} Q^{**} \text{ int } A)^c = \cup \{B/B \text{ is } \tau_i\tau_j \text{-} Q^{**} \text{ open and } B \subset A\}^c.\\ = \cap \{B^c/B^c \text{ is } \tau_i\tau_j \text{-} Q^{**} \text{ open and } B \subset A\}\\ = \cap \{B^c/B^c \text{ is } \tau_i\tau_j \text{-} Q^{**} \text{ closed and } A^c \subset B^c\}\\ = \cap \{F/F \text{ is } \tau_i\tau_j \text{-} Q^{**} \text{ closed and } A^c \subset F\}\\ = \tau_i\tau_j \text{-} Q^{**} \text{ cl } (A^c). \end{array}$

Result 3.2. The relationship between $\tau_i \tau_j$ - Q^{**} closed sets and other generalizations is given by the following figure

4. $\tau_i \tau_i - Q^{**}$ OPEN SETS

Definition 4.1. A subset A of a bitopological spaces (X, τ_1, τ_2) is called $\tau_i \tau_j - Q^{**}$ open if X - A is $\tau_i \tau_j - Q^{**}$ closed in X

Example 4.1. In example 3.1, X, $\{c\}$, $\{a, b\}$ are $\tau_i \tau_j - Q^{**}$ open.

Remark 4.1. Since every $\tau_i \tau_j - Q^{**}$ open set is τ_j - open and every τ_j - open set is $\tau_i \tau_j$ - g open, $\tau_i \tau_j$ - sg open, $\tau_i \tau_j$ - gs we have every $\tau_i \tau_j - Q^{**}$ open set is $\tau_i \tau_j$ - g open, $\tau_i \tau_j$ - g open and $\tau_i \tau_j$ - gs open and $\tau_i \tau_j$ - gs open and the converse need not be true in general. The following example supports our claim.

Example 4.2. In example 3.1,{a, b} is $\tau_i \tau_i$ - g open, $\tau_i \tau_i$ - sg open and $\tau_i \tau_i$ - gs open but not $\tau_i \tau_i$ - Q^{**}open.

Theorem 4.1. A set A of a bitopological space (X, τ_1, τ_2) is $\tau_i \tau_j - Q^{**}$ open if and only if $\tau_i - cl(A) = X$ and A is $\tau_j - Q^*$ open.

Proof: Necessity: Suppose that A is $\tau_i \tau_j$ - Q^{**}open.

Then A^c is $\tau_i \tau_j - Q^{**}$ closed.

Therefore,

Consequently,

 τ_i - int (A^c) = $[\tau_i$ - cl (A)]^c = ϕ and A^c is τ_i - Q* closed.

 τ_i - cl (A) = X and A is τ_i - Q* open.

Sufficiency: Suppose that $\tau_i - cl(A) = X$ and A is $\tau_i - Q^*$ open.

Then $[\tau_i - cl(A)]^c = \tau_i - int(A^c) = \phi$ and A^c is $\tau_i - Q^*$ closed.

Consequently,

This completes the proof.

 A^{c} is $\tau_{i} \tau_{j}$ - Q^{**} closed.

Corollary 4.1. A set A of a bitopological space (X, τ_1, τ_2) is $\tau_i \tau_j - Q^{**}$ open if and only if A is τ_i - dense and τ_j - open.

Theorem 4.2. If A and B are $\tau_i \tau_j - Q^{**}$ open sets then so is $A \cap B$.

Proof: Suppose that A and B are $\tau_i \tau_i - Q^{**}$ open sets.

Then A^c and B^c are $\tau_i \tau_j$ - Q^{**} closed sets.

Therefore,

 $A^{c} \cup B^{c}$ is $\tau_{i} \tau_{j}$ - Q^{**} closed sets.

But $A^c \cup B^c = (A \cap B)^c$.

Hence $A \cap B \tau_i \tau_i - Q^{**}$ open.

Theorem 4.3.

- i) X is not $\tau_i \tau_j Q^{**}$ closed.
- ii) ϕ is $\tau_i \tau_j Q^{**}$ closed.
- iii) X is $\tau_i \tau_j Q^{**}$ open

iv) X is not $\tau_i \tau_j - Q^{**}$ open.

Remark 4.3. It is obvious that every $\tau_i \tau_j - Q^{**}$ open set is τ_j - open, but the converse is not true in general.

Remark 4.4. Every $\tau_i \tau_j$ - Q^{**} open is $\tau_i \tau_j$ -semi open. But the converse need not be true. The following example supports our claim.

Example 4.5. In example 3.2, $\{b,c\}$ is $(\tau_1,\tau_2)^*$ - semi open but not $\tau_i \tau_i - Q^{**}$ open.

Remark 4.5. $\tau_i \tau_j - g^*$ open sets and $\tau_i \tau_j - Q^{**}$ open sets are independent of each other in general. It is proved in the following example.

Example 3.6. $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{c\}, \{a, c\}\}, \tau_2 = \{\phi, X, \{a\}\}$. Then $\{a, c\}$ is $\tau_i \tau_j - g^*$ open but not $\tau_i \tau_j - Q^{**}$ open set.

Remark 3.8. $\tau_i \tau_j - g^*$ open sets and $\tau_i \tau_j - Q^*$ open sets are independent of each other in general. It is proved in the following example.

Example 3.7. $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{c\}, \{a, c\}\}, \tau_2 = \{\phi, X, \{a\}\}$. Then $\{a\}$ is $\tau_i \tau_j$ - g*open but not $\tau_i \tau_j$ - Q* open set.

Theorem 4.4. If $B \subset A \subset X$, where A is $\tau_i \tau_j - Q^{**}$ open and B is $\tau_i \tau_j - Q^{**}$ open in A then B is $\tau_i \tau_j - Q^{**}$ open in X.

Proof: Since B is τ_i - open in A, A is τ_i - open in X and B is τ_i - open in X.

We claim that τ_i - cl (B) = X.

Let U be any τ_j - Q** open set.

Since τ_1 - cl (B) is A, (U \cap A) \cap B $\neq \phi$.

Then

 $(U \cap A) \cap B \neq \phi.$

Hence

Therefore,

 $\tau_1 - cl (B) = X.$

B is $\tau_i \tau_i - Q^{**}$ open in X.

Theorem 4.5. If A and B are τ_2 - open sets with $A \cap B = \phi$ then A and B are not $\tau_i \tau_i - Q^{**}$ open.

Proof: Since $A \cap B = \phi$, the points of B cannot be limit points of A.

Then τ_1 - cl (A) \neq X.

Hence A is not $\tau_i \tau_j - Q^{**}$ open.

Similarly, B is not $\tau_i \tau_j$ - Q^{**}open.

Theorem 4.6. Let (X, τ_1, τ_2) be a hyper connected bitopological space. Let $A \subset X$. If A is τ_j - open then A is $\tau_i \tau_j - Q^{**}$ open in X.

Proof: It is enough to prove that A is τ_i - dense.

Suppose that τ_i - cl (A) \neq X.

Then $[\tau_i - cl(A)]^c \neq \phi$.

Consequently,

 $A \cap \left[\tau_i \text{-} cl\left(A\right)\right]^c \neq \phi.$

This is a contradiction to the fact that (X, τ_1, τ_2) is a hyper connected bitopological space.

Hence A is τ_i - dense.

REFERENCES

- [1] Abd El Monsef, M.E., S.N.EI- Deeb and Mahmoud, R.A., "β open sets and β continuous mapping", Bull. Fac. Sci. AssiutUniv 12: (1983), 77-90.
- [2] Chattopadhyay, Chandan and Bandyopadhyay, Chandan, "Introduced on Structure of δ sets", Bull. Cal. Math. Soc, (1991), 83: 281-290.
- [3] P. Bhattacharyya and B.K. Lahiri, "Semi generalized closed sets in topology, Indian J. Math., 29 (3) (1987), 375 - 382.
- [4] K. Chandrasekhara Rao, Toplogy Alpha Science, Oxford 2009.
- [5] K. Chandrasekhara Rao and P. Padma, "On Low BitopologicalSeperation properties", Bulletin of pure and applied sciences, Volume 29 E Issue 2 (2010) P. 237 242.
- [6] T.Fukutake, Semi open sets on bitopological spaces, Bull. Fukuoka Uni. Education, 38 (3) (1989), 1 7.
- [7] T.Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Uni. Ed Part III, 35 (1986), 19 28.
- [8] James R. Munkres, "Topology: A First -Course", Prentice Hall of India, New Delhi, 2001.
- [9] J. C. Kelly, Bitopological Spaces, Proc. London Math Soc., 13 (1963) 71-89.
- [10] N. Levine "Generalised closed sets in topology, Rend, Circ. Mat. Palermo, 19 (2) (1970), 89 96.
- [11] Maheswari, S.N., Prasad, R., Semi open sets and semi continuous functions in bitopological spaces. Math. Notae 26 (1977/78), 29-37.
- [12] M. Murugalingam and N. Laliltha, "Q star sets", Bulletin of pure and applied Sciences, Volume 29E Issue 2 (2010) p. 369 - 376.
- [13] M. Murugalingam and N. Laliltha, "Q* sets in various spaces", Bulletin of pure and applied Sciences, Volume 3E Issue 2 (2011) p. 267 - 277.
- [14] P. Padma and S. Udayakumar, " $\tau_1 \tau_2$ Q* continuous maps in bitopological spaces" Asian Journal of Current Engineering and Mathematics, 1: 4 Jul Aug (2012), 227 229.
- [15] P. Padma and S. Udayakumar, " $(\tau_1, \tau_2)^*$ Q* closed sets in bitopological spaces", International Journal of Mathematical Archive 3(7), 2012, 2568 2574.
- [16] P. Padma and S. Udayakumar and K. Chandrasekhara Rao " $(\tau_1, \tau_2)^*$ Q* continuous maps in bitopological spaces" International Journal of Mathematical Archive 3 (8), 2012, 2990 2996.
- [17] K. Chandrasekhara Rao and P. Padma, On Low Bitopological Separation properties, Bulletin of pure and applied sciences, Volume 29 E Issue 2 (2010) P. 237 242.
- [18] K. Chandrasekhara Rao and P. Padma, Strongly minimal generalized boundary, Indian Journal of Applied Research, Volume 1, Issue 7, April 2012, P. 176 - 177.
- [19] P. Padma and S. Udayakumar, K. Chandrasekhara Rao, "Pairwise Q* Separation Axioms" (Appeared).
- [20] P. Padma and S. Udayakumar, "Pairwise separation axioms" (Appeared).
- [22] M. K. R. S, Veera Kumar, between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 21 (2000), 1–19.
- [23] M. Sheik john and P. Sundaram, g* closed sets in bitopological spaces, Indian journal of pure and applied mathematics 35 (1): 71 - 80, January 2004.

Source of support: Nil, Conflict of interest: None Declared