A COMMON FIXED POINT THEOREM FOR FOUR SELF MAPS ON A PROBABILISTIC METRIC SPACE UNDER DNR COMMUTATIVITY CONDITION USING IMPLICIT RELATION

K. P. R. Sastry¹, G. A. Naidu², D. Narayana Rao^{3*} and S. S. A. Sastri⁴

¹8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam- 530017, India

^{2, 3}Department of Mathematics, Andhra University, Visakhapatnam-530 003, India

⁴Department of Mathematics, GVP College of Engineering, Madhurawada, Visakhapatnam- 530048, India

(Received on: 02-07-12; Revised & Accepted on: 11-10-12)

ABSTRACT

The aim of present paper is to obtain a common fixed point theorem for four self mappings on a probabilistic metric space by using DNR-commutativity in probabilistic metric spaces satisfying implicit relations.

AMS Mathematical subject classification (2000): 47H10, 54H25

Key Words: probabilistic metric space, reciprocally continuous, DNR-commuting, implicit relation.

1. INTRODUCTION

In 1942, K. Menger [5] introduced the notion of a probabilistic metric space (briefly PM-space) as a generalization of metric space. The development of the theory of probabilistic metric spaces is due to Schweizer and Sklar [11]. Sehgal [12] initiated study of fixed point theory in PM space contraction mapping theorems in PM-spaces.

Generalization of the notion of commutativity of mappings has been extended to PM-spaces by various authors. Singh and Pant [15] extended the notion of weak commutativity (introduced by Sessa [13] in metric spaces). Mishra [7] extended the notion of compatibility (introduced by Jungck [2] in metric spaces). Ciric and Milovanovic –Arandjelovic [1] extended the notion of point wise R-weak commutativity (introduced by Pant [8] in metric spaces). In 2007, Kohli, Vasista [3] extended the notion of R-weak commutativity and its variants to probabilistic metric spaces.

In 2012, Shikha Chaudhari [14] established the existence of a common fixed point for six mappings in PM-spaces satisfying implicit relation and variants of R-weak commutativity.

Recently K.P.R. Sastry. et.al [10] introduced the notion DNR-functions and DNR -commutativity as a generalization of R-weak commutativity.

In this paper we use DNR-commutativity instead of R-weak commutativity in [14] for four mappings and latter extended for six mappings.

In this paper we establish a common fixed point theorem for four self maps on a Menger space, satisfying DNR-commutativity property.

This result is also extended to six self maps.

2. PRELIMINARIES

Throughout the paper, \mathbb{R} stands for the real line and \mathbb{R}^+ stands for the set of non negative real numbers. We begin with some definitions.

Definition 2.1: [11] A mapping $F: \mathbb{R} \to \mathbb{R}^+$ is called a distribution function if it is non-decreasing and left continuous with $\inf_{t \in \mathbb{R}} F(t) = 0$ and $\sup_{t \in \mathbb{R}} F(t) = 1$.

We shall denote by \mathfrak{D} , the class of all distribution functions.

The Heaviside function H is a distribution function defined by $H(t) = \begin{cases} 0 & \text{if } t \leq 0 \\ 1 & \text{if } t > 0 \end{cases}$

Definition 2.2: [11] Let X be a non empty set and let \mathfrak{D} denote the set of all distribution functions. An ordered pair (X, F) is called a probabilistic metric space if F is a mapping from $X \times X \to \mathfrak{D}$ satisfying the following conditions.

- (1) $F_{u,v}(t) = H(t)$ if and only if x = y,
- (2) $F_{x,y}(0) = 0$
- (3) $F_{x,y}(t) = F_{y,x}(t)$
- (4) If $F_{x,y}(t) = 1$ and $F_{y,z}(s) = 1$ then $F_{x,z}(t+s) = 1$ for all $x, y, z \in X$ and t, s > 0.

Definition 2.3: [11] A t-norm is a function $t: [0,1] \times [0,1] \to [0,1]$ satisfying the following conditions.

- (1) $t(a, 1) = a \quad \forall a \in [0,1]$
- $(2) \quad t(a,b) = t(b,a)$
- (3) $t(c,d) \ge t(a,b)$ for $c \ge a$ and $d \ge b$
- (4) $t(t(a,b),c) = t(a,t(b,c)) \ \forall a,b,c \in [0,1]$

Examples of t-norms are $t(a, b) = min\{a, b\}$, t(a, b) = ab and $t(a, b) = min\{a + b - 1, 0\}$.

Definition 2.4: [11] A Menger probabilistic metric space (X, F, t) is an ordered triad, where t is a t-norm and (X, F) is a probabilistic metric space satisfying:

$$F_{x,z}(t+s) \ge t\left(F_{x,y}(t), F_{y,z}(s)\right) \ \forall \ t,s \ge 0 \ and \ x,y,z \in X.$$

Definition 2.5: [11] A sequence $\{x_n\}$ in (X, F, t) is said to converge to $x \in X$ if for every $\varepsilon > 0$ and $\lambda > 0$ there exists a positive integer $N(\varepsilon, \lambda)$ such that $F_{x_n, x}(\varepsilon) > 1 - \lambda$ for all $n \ge N(\varepsilon, \lambda)$.

Definition 2.6: [11] A sequence $\{x_n\}$ in (X, F, t) is said to be a Cauchy sequence if for $\varepsilon > 0$ and $\lambda > 0$ there exists a positive integer $N(\varepsilon, \lambda)$ such that $F_{x_m, x_n}(\varepsilon) > 1 - \lambda$ for all $m, n > N(\varepsilon, \lambda)$.

Definition 2.7: [11] A Menger space (X, F, t) with continuous t-norm, is said to be complete if every Cauchy sequence in X is convergent.

Definition 2.8: [14] Two self mappings f and g of a probabilistic metric space (X, F) are said to be weakly commuting if $F_{fgx,gfx}(t) \ge F_{fx,gx}(t)$ for each $x \in X$ and t > 0

Definition 2.9: [7] Two self mappings f and g of a probabilistic metric space (X, F) will be compatible if and only if $\lim_{n\to\infty} F_{fgx_n,gfx_n}(t) = 1 \ \forall \ t > 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = z$ for some $z \in X$.

Definition 2.10: [1] Two self mappings f and g of a probabilistic metric space (X, F) are said to be point wise R-weakly commuting if given $x \in X$, there exists R > 0 such that $F_{fgx,gfx}(t) \ge F_{fx,gx}\left(\frac{t}{p}\right)$ for $t \ge 0$.

Definition 2.11: [14] Two self mappings f and g of a probabilistic metric space (X, F) are said to be reciprocally continuous if $fgx_n \to fz$ and $gfx_n \to gz$ whenever $\{x_n\}$ is a sequence in X such that $fx_n, gx_n \to z$ for some $z \in X$.

Definition 2.12: [3] Two self mappings f and g of a probabilistic metric space (X, F) are said to be

- (I) R-weakly commuting of type (i) if there exists a positive real number R such that $F_{ffx,gfx}(t) \ge F_{fx,gx}\left(\frac{t}{R}\right)$ for each $x \in X$ and $t \ge 0$.
- (II) R-weakly commuting of type (ii) if there exists a positive real number R such that

$$F_{fgx,ggx}(t) \ge F_{fx,gx}\left(\frac{t}{R}\right)$$
 for each $x \in X$ and $t \ge 0$.

(III) R-weakly commuting of type (iii) if there exists a positive real number R such that

$$F_{ffx,ggx}(t) \ge F_{fx,gx}\left(\frac{t}{R}\right)$$
 for each $x \in X$ and $t \ge 0$.

Lemma 2.13: [4] Let $\{u_n\}$ be a sequence in a Menger space (X, F, t). If there exists a constant $h \in (0,1)$ such that $F_{u_n,u_{n+1}}(ht) \ge F_{u_{n-1},u_n}(t)$, n = 1,2,3,..., then $\{u_n\}$ is a Cauchy sequence in X.

3. IMPLICIT RELATIONS

In [6] Mihet established a fixed point theorem concerning probabilistic contraction satisfying an implicit relation. In [9] Popa used the family F_4 of implicit real functions to find the fixed point of two pairs of semi compatible mappings in a d-compatible topological space. Here F_4 denotes the family of all real continuous functions $f:(\mathbb{R})^4 \to \mathbb{R}$ satisfying the following properties.

 (F_K) there exists $k \ge 1$ such that for every $u \ge 0, v \ge 0$ with $f(u, v, u, v) \ge 0$ (or) $f(u, v, v, u) \ge 0$ we have $u \ge kv$

$$(F_u)$$
 $f(u, v, 0, 0) < 0$ for all $u > 0$.

We denote by Φ the class of all real valued continuous functions $\varphi: (\mathbb{R}^+)^4 \to \mathbb{R}$, non deceasing in first argument and satisfying

(i) for all
$$u, v \ge 0$$
, $\varphi(u, v, u, v) \ge 0$ (or) $\varphi(u, v, v, u) \ge 0 \Rightarrow u \ge v$ (3.1)

(ii)
$$\varphi(u, u, 1, 1) \ge 0 \text{ for all } u \ge 1$$
 (3.2)

4. MAIN RESULTS

Kohli, Vashistha and Kumar [4] proved the following lemma for six mappings.

Lemma 4.1 (Lemma4.2, Kohli , Vashistha and Kumar [4]): Let (X, F, t) be a complete Menger space where T denotes a continuous t-norm. Further, let (p, hk) and (q, fg) be pointwise R-weakly commuting pairs of self-mappings of X satisfying

$$p(X) \subset fg(X), q(X) \subset hk(X) \tag{4.1.1}$$

$$\varphi(F_{nx,qy}(\alpha t), F_{hkx,fqy}(t), F_{nx,hkx}(t), F_{qy,fqy}(\alpha t) \ge 0 \tag{4.1.2}$$

$$\varphi(F_{px,qy}(\alpha t), F_{hkx,fqy}(t), F_{px,hkx}(\alpha t), F_{qy,fqy}(t) \ge 0$$

$$\tag{4.1.3}$$

for all $x, y \in X$, t > 0, $\alpha \in (0,1)$ and for some $\varphi \in \Phi$.

Then the continuity of one of the mappings in the compatible pairs (p, hk) or (q, fg) on (X, F, T) implies their reciprocal continuity.

Shikha Chaudhari [14] proved the lemma by assuming (p, hk) and (q, fg) to be R-weakly commuting mappings of type (i), type (ii) and type (iii) respectively.

Now we prove an analogue of the above Lemma 4.1 for four maps.

Lemma 4.2: Let (X, F, t) be a complete Menger space where t denotes a continuous t-norm. Further, let A, S, B and T be self mappings on X satisfying

$$A(X) \subset T(X), B(X) \subset S(X) \tag{4.2.1}$$

$$\varphi\left(F_{Ax,By}(ht), F_{Sx,Ty}(t), F_{Ax,Sx}(t), F_{By,Ty}(ht)\right) \ge 0$$
 (4.2.2)

$$\varphi\left(F_{Ax,By}(ht), F_{Sx,Ty}(t), F_{Ax,Sx}(ht), F_{By,Ty}(t)\right) \ge 0 \tag{4.2.3}$$

for all $x, y \in X$, t > 0, $h \in (0,1)$ and for some $\varphi \in \Phi$.

Moreover A and S are commuting and B and T are commuting. If

- (i) S is continuous then (A, S) is reciprocally continuous.
- (ii) T is continuous then (B,T) is reciprocally continuous.

Proof: We prove (i). The proof of (ii) is similar. Suppose *A* and *S* commute, so that *A* and *S* are compatible. Suppose *S* is continuous.

We shall show that A and S are reciprocally continuous.

Let $\{x_n\}$ be a sequence in X such that $Ax_n \to z$ and $Sx_n \to z$ for some $z \in X$ as $n \to \infty$.

Since S is continuous $SAx_n \rightarrow Sz$, $SSx_n \rightarrow Sz$.

We show that $ASx_n \rightarrow Az$.

In view of compatibility of (A, S), we have $F_{ASx_n,SAx_n}(t) \to 1$.

i.e.
$$F_{ASx_n,Sz}(t) \rightarrow 1$$

i.e. $ASx_n \rightarrow Sz$ as $n \rightarrow \infty$.

In view of (4.2.1) for each n, there exists $y_n \in X$ such that $ASx_n = Ty_n$.

So
$$SSx_n \to Sz$$
, $SAx_n \to Sz$, $ASx_n \to Sz$ and $Ty_n \to Sz$ as $n \to \infty$. (4.2.4)

Next we claim that $By_n \to Sz$ as $n \to \infty$.

By putting $x = Sx_n$ and $y = y_n$ in (4.2.2), we get

$$\varphi\left(F_{ASx_n,By_n}(ht),F_{SSx_n,Ty_n}(t),F_{ASx_n,SSx_n}(t),F_{By_n,Ty_n}(ht)\right) \ge 0$$

Since φ is continuous, by (4.2.4), we have

$$\varphi\left(F_{Sz,By_n}(ht),1,1,F_{By_n,Sz}(ht)\right) \geq 0$$

i.e.
$$F_{Sz,By_n}(ht) \ge 1$$
 (from (3.1))

$$F_{Sz,By_n}(ht) = 1$$

i.e.
$$By_n \to Sz$$
 as $n \to \infty$.

Again putting
$$x = z$$
 and $y = y_n$ in (4.2.3), we get $\varphi\left(F_{Az,By_n}(ht), F_{Sz,Ty_n}(t), F_{Az,Sz}(ht), F_{By_n,Ty_n}(t)\right) \ge 0$

Letting $n \to \infty$, we get

$$\varphi\left(F_{Az,Sz}(ht),F_{Sz,Sz}(t),F_{Az,Sz}(ht),F_{Sz,Sz}(t)\right) \geq 0$$

i.e
$$\varphi(F_{Az,Sz}(ht), 1, F_{Az,Sz}(ht), 1) \ge 0$$

By (3.1), we get
$$F_{Az,Sz}(ht) \ge 1$$

$$Az = Sz$$

Hence $ASx_n \rightarrow Az$.

This completes the proof of the lemma.

Now we introduce the notion of a DNR-function and DNR-commuting property.

Definition 4.3: [10] A function $\psi: X \times \mathbb{R}^+ \to \mathbb{R}^+$ is said to be a DNR function if

$$\psi(x,t) > 0$$
 for all $x \in X$ and $t > 0$.

 Ψ denotes the class of all DNR functions ψ .

Example 4.4: [10] Let $X = \{2, 3, 4, ...\}$ with the metric d(x, y) = |x - y| and define

$$F_{x,y}(t) = \begin{cases} 0 & if \quad t \leq x \\ 1 & if \quad t > y \\ \frac{t-x}{y-x} & if \quad x < t \leq y \end{cases} \quad \text{for } x < y.$$

Clearly
$$(X, F)$$
 is a PM-space. Define $\psi(x, t) = \begin{cases} x & \text{if } t \leq x \\ \frac{t-1}{x} & \text{if } t > x \end{cases}$ for $x \in [2, \infty)$

Then ψ is a DNR function.

Definition 4.5: [10] Suppose A and S are self maps on a PM-space (X, F). We say that the pair (A, S) is DNR-commutating if $z \in X$ and $t > 0 \Rightarrow$ there exists $\psi \in \Psi$ such that $F_{ASz,SAz}(t) \geq F_{Az,Sz}(\psi(z,t))$.

Note 1: If A and S are point wise R-weakly commuting self maps on a PM- space X, then A and S are DNR-commuting.

Note 2: If *A* and *S* are DNR-commuting self maps on a PM-space *X*, then *A* and *S* are compatible.

Theorem 4.6: Let (X, F, t) be a complete Menger space where t denotes a continuous t-norm. Further, let (A, S) and (B, T) be DNR-commuting pairs of self mappings on X satisfying

$$A(X) \subset T(X), B(X) \subset S(X) \tag{4.6.1}$$

$$\varphi\left(F_{Ax,By}(ht), F_{Sx,Ty}(t), F_{Ax,Sx}(t), F_{By,Ty}(ht)\right) \ge 0 \tag{4.6.2}$$

$$\varphi\left(F_{Ax,By}(ht), F_{Sx,Ty}(t), F_{Ax,Sx}(ht), F_{By,Ty}(t)\right) \ge 0 \tag{4.6.3}$$

for all $x, y \in X$, t > 0, $h \in (0,1)$ and for some $\varphi \in \Phi$.

Moreover S commutes with A and T commutes with B. Further suppose that S and T are continuous. Then A, B, S and T have a unique common fixed point in X.

Proof: Let $u_0 \in X$. By (4.6.1), we define the sequences $\{u_n\}$ and $\{v_n\}$ in X such that for n = 0,1,2,...

$$v_{2n+1} = Au_{2n} = Tu_{2n+1},$$

$$v_{2n+2} = Bu_{2n+1} = Su_{2n+2}$$

Now by putting $x = u_{2n}$, $y = u_{2n+1}$ in (4.6.2), we get

$$\varphi\left(F_{Au_{2n},Bu_{2n+1}}(ht),F_{Su_{2n},Tu_{2n+1}}(t),F_{Au_{2n},Su_{2n}}(t),F_{Bu_{2n+1},Tu_{2n+1}}(ht)\right)\geq 0$$

$$\Rightarrow \varphi\left(F_{\nu_{2n+1},\nu_{2n+2}}(ht),F_{\nu_{2n},\nu_{2n+1}}(t),F_{\nu_{2n+1},\nu_{2n}}(t),F_{\nu_{2n+2},\nu_{2n+1}}(ht)\right) \geq 0$$

Using (3.1), we get

$$F_{v_{2n+1},v_{2n+2}}(ht) \ge F_{v_{2n},v_{2n+1}}(t)$$

Now by putting $x = u_{2n+2}$, $y = u_{2n+1}$ in (4.6.2), we get

$$\varphi\left(F_{Au_{2n+2},Bu_{2n+1}}(ht),F_{Su_{2n+2},Tu_{2n+i}}(t),F_{Au_{2n+2},Su_{2n+2}}(t),F_{Bu_{2n+1},Tu_{2n+1}}(ht)\right)\geq 0$$

$$\Rightarrow \varphi\left(F_{v_{2n+3},v_{2n+2}}(ht),F_{v_{2n+2},v_{2n+1}}(t),F_{v_{2n+3},v_{2n+2}}(t),F_{v_{2n+2},v_{2n+1}}(ht)\right) \geq 0$$

Using (3.1), we get

$$F_{v_{2n+3},v_{2n+2}}(ht) \ge F_{v_{2n+2},v_{2n+1}}(t)$$

Thus for any n and t, we have $F_{v_n,v_{n+1}}(ht) \ge F_{v_{n-1},v_n}(t)$.

Hence by Lemma 2.13, $\{v_n\}$ is a Cauchy sequence in X.

Since X is complete $\{v_n\}$ converges to z.

: Its subsequences $\{Au_{2n}\}, \{Bu_{2n+1}\}, \{Su_{2n}\}$ and $\{Tu_{2n+1}\}$ also converge to z.

Now, suppose that (A, S) is a compatible pair and S is continuous. Then by Lemma 4.2, A and S are reciprocally continuous.

Then $ASu_{2n} \rightarrow Az$ and $SAu_{2n} \rightarrow Sz$.

Compatibility of A and S gives $F_{ASu_{2n},SAu_{2n}}(t) \rightarrow 1$.

i.e.
$$F_{Az,Sz}(t) \rightarrow 1$$
 as $n \rightarrow \infty$.

Hence Az = Sz.

Since $A(X) \subset S(X)$, there exists a point u in X such that Az = Tu.

Now by putting x = z, y = u in (4.6.2), we get

$$\varphi\left(F_{Az,Bu}(ht),F_{Sz,Tu}(t),F_{Az,Sz}(t),F_{Bu,Tu}(ht)\right)\geq 0$$

i.e.
$$\varphi\left(F_{Az,Bu}(ht),1,1,F_{Bu,Az}(ht)\right) \geq 0$$

Using (3.1), we get $F_{Az,Bu}(ht) \ge 1$ for all $t \ge 0$

$$\Rightarrow F_{Az,Bu}(ht) = 1$$

Hence Az = Bu.

Thus Az = Sz = Bu = Tu.

Since A and S are DNR-commuting, to the pair (z,t) corresponds a $\psi \in \Psi$ such that

$$F_{ASz,SAz}(t) \ge F_{Az,Sz}(\psi(z,t))$$

$$= 1$$

Hence ASz = SAz and SAz = SSz = AAz = ASz.

Since B and T are DNR-commuting, we have

$$BBu = BTu = TBu = TTu$$
.

Again by putting x = Az, y = u in (4.6.2), we get

$$\varphi\left(F_{AAz,Bu}(ht),F_{SAz,Tu}(t),F_{AAz,SAz}(t),F_{Bu,Tu}(ht)\right) \geq 0$$

$$\Rightarrow \varphi(F_{AAz,Az}(ht), F_{AAz,Az}(t), 1, 1) \ge 0$$

Therefore $F_{AAz,Az}(ht) \ge 1$ for all t > 0, using (3.1)

$$\therefore F_{AAz,Az}(ht) = 1.$$

$$\Rightarrow AAz = Az$$
 and $Az = AAz = SAz$.

 \therefore Az is a common fixed point of A and S.

By putting x = z, y = Bu in (4.6.3), we get

$$\varphi\left(F_{Az,BBu}(ht),F_{Sz,TBu}(t),F_{Az,Sz}(ht),F_{BBu,TBu}(t)\right) \geq 0$$

$$\Rightarrow \varphi(F_{Az,BAz}(ht),F_{Az,TAz}(t),1,1) \geq 0$$

Since φ is non decreasing, using (3.1), we get

$$F_{Az BAz}(t) \ge 1. (\because BAz = BTu = TBu = TAz)$$

$$\therefore Az = BAz = TAz.$$

Hence Az is a common fixed point of A, B, S and T.

Clearly, Az is the unique common fixed point of A, B, S and T.

Note: The theorem is valid if one of the mappings in the compatible pairs (A, S) and (B, T) is continuous instead of assuming that S and T are continuous. The proof is similar.

The following theorem is an extension to six mappings

Theorem 4.7: Let (X, F, t) be a complete Menger space, where t denotes a continuous t-norm. Suppose A, B, S, T, H and R are self maps on X such that (A, SH) and (B, TR) are DNR-commuting pairs of self mappings on X satisfying

$$A(X) \subset TR(X), B(X) \subset SH(X)$$
 (4.7.1)

$$\varphi\left(F_{Ax,By}(\alpha t), F_{SHx,TRy}(t), F_{Ax,SHx}(t), F_{By,TRy}(\alpha t)\right) \ge 0 \tag{4.7.2}$$

$$\varphi\left(F_{Ax,By}(\alpha t), F_{SHx,TRy}(t), F_{Ax,SHx}(\alpha t), F_{By,TRy}(t)\right) \ge 0 \tag{4.7.3}$$

for all $x, y \in X$, t > 0, $\alpha \in (0,1)$ and for some $\varphi \in \Phi$.

Moreover suppose H commutes with A and S and R commutes with B and T. Suppose that SH and TR are continuous. Then A, B, S, T, R and H have a unique common fixed point in X.

Proof: Write SH = P and TR = Q.

By hypothesis, *P* and *Q* are continuous.

Thus by Theorem 4.6, A, B, P and Q have a unique common fixed point z in X.

i.e.
$$Az = Bz = Pz = Qz = z$$
.

Take x = Hz, y = z in (4.7.2). We get

$$\varphi\left(F_{AHz,Bz}(\alpha t),F_{SHHz,TRz}(t),F_{AHz,SHHz}(t),F_{Bz,TRz}(\alpha t)\right)\geq 0$$

$$\varphi\left(F_{HAz,z}(\alpha t), F_{HSHz,Qz}(t), F_{HAz,HSHz}(t), F_{z,Qz}(\alpha t)\right) \ge 0$$

$$\varphi\left(F_{Hz,z}(\alpha t),F_{Hz,z}(t),F_{Hz,Hz}(t),F_{z,z}(\alpha t)\right)\geq 0$$

Hence
$$\varphi(F_{Hz,z}(\alpha t), F_{Hz,z}(t), 1, 1) \ge 0$$

 $\Rightarrow F_{Hz,z}(t) \ge 1$ for every t > 0 (: φ is non decreasing in its first co ordinate)

$$\Rightarrow Hz = z$$

 \Rightarrow z is a fixed point of H.

Now
$$z = Pz = SHz = Sz$$
.

 \therefore z is also a fixed point of S.

Now take x = z and y = Tz in (4.7.2). We get

$$\varphi\left(F_{Az,BTz}(\alpha t),F_{SHz,TRTz}(t),F_{Az,SHz}(t),F_{BTz,TRTz}(\alpha t)\right)\geq 0$$

$$\Rightarrow \varphi\left(F_{z,TBz}(\alpha t),F_{z,TTRz}(t),F_{z,z}(t),F_{TBz,TTRz}(\alpha t)\right) \geq 0$$

$$\Rightarrow \varphi\left(F_{z,Tz}(\alpha t),F_{z,Tz}(t),F_{z,z}(t),F_{Tz,Tz}(\alpha t)\right) \geq 0$$

$$\Rightarrow \varphi(F_{z,Tz}(\alpha t), F_{z,Tz}(t), 1, 1) \geq 0$$

 $\Rightarrow F_{z,Tz}(t) \ge 1$ for every t > 0 (: φ is non decreasing in its first co ordinate)

$$\Rightarrow Tz = z$$
.

 \therefore z is also a fixed point of T

Now
$$z = Qz = TRz = RTz = Rz$$
.

 \therefore z is also a fixed point of R

Hence z is a common fixed point of A, B, S, T, R and H.

Suppose x is also a fixed point of A, B, S, T, R and H.

Then
$$Pz = SHz = S(Hz) = Sz = z$$

and
$$Oz = TRz = T(Rz) = Tz = z$$

Similarly Ox = Px = x. Thus x and z are common fixed points of A, B, P and O.

Hence by Theorem 4.6, z = x.

Thus A, B, S, T, R and H have unique fixed point.

REFERENCES

- 1. Ciric. Lj. B and Milovanovic-Arandjelovic. M.M: Common fixed point theorem for R- weak commuting mappings in Menger spaces, J. Indian Acad. Math., 22, (2000), 199-210.
- 2. Jungck. G: Compatible mappings and common fixed points, Inter. J. Math. Math. Sci., 9, (1986), 771-779.
- 3. Kohli. J.K, Vashistha. S: Common fixed point theorems in probabilistic metric spaces, Acta Math. Hungar 115 (1-2), (2007), 37-47.
- 4. Kohli. J.K, Vashistha. S and Kumar. D: A common fixed point theorem for six mappings in Probabilistic metric spaces satisfying contractive type implicit relation, Int. J. Math. Anal. 4(2), (2010), 63-74.
- 5. Menger, K. Statistical Metrics, Proc. Nat. Acad. Sci., U.S.A, 28, (1942), 535-537.
- Mihet. D: A generalization of a contraction principle in Probabilistic Spaces, Part II, Int. J. Math. Sci., (2005), 729-736
- 7. Mishra. S.N: Common fixed points of compatible mappings in PM spaces, Math. Japon, (1991), 283-289.
- 8. Pant. R.P: A common fixed point theorem of non-commuting mappings, J. Math. Anal. 188, (1994), 436-440.
- 9. Popa. V: Fixed points for non-surjective expansion mappings, satisfying an implicit relation, Bul. Stiint. Univ. Baia Mare Ser. B Fasc. Mat-Inform, 18, (2002), 105-108.
- 10. Sastry. K.P.R, Naidu. G.A, Narayana Rao. D and Sastri S.S.A: A common fixed point theorem for self maps on a probabilistic metric space under DNR commutativity condition. Pre print.
- 11. Schweizer. B and Sklar. A: Statistical metric spaces, North Holland Amsterdam, (1983).
- 12. Sehgal. V.M: Some fixed point theorems in functional analysis and Probability, Ph.D. dissertation, Wayne State Univ. 1966.

- K. P. R. Sastry¹, G. A. Naidu², D. Narayana Rao^{3*} and S. S. A. Sastri⁴/ A common fixed point theorem for four self maps on a Probabilistic metric space under DNR commutativity condition using implicit relation/RJPA- 2(10), Oct.-2012.
- 13. Sessa. S: On a weak commutativity condition in fixed point considerations, Publ. Inst. Math., (Beograd) (N.S), 32 (46), (1982), 149-153.
- 14. Shikha Chaudhari: A common fixed point theorem for six mappings in probabilistic metric spaces satisfying implicit relation and variants of R-weak commutativity, International Journal of Mathematical Archive-3(2), (2012), 550-555.
- 15. Singh S.L and Pant B.D: Common fixed points of weakly commuting mappings on non-Archimedean Menger spaces, Vikram. Math. J, 6, (1986), 27-31.

Source of support: Nil, Conflict of interest: None Declared