APPLICATION OF REDUCE DIGITS ALGORITHM IN DIVISIBILITY OF NUMBERS

H. Khosravi*, P. Jafari and E. Faryad
Department of Mathematics, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, P. Box 91735-413, Iran

(Received on: 06-05-12; Accepted on: 29-09-12)

Abstract

We give a new algorithm entitled reduce digits algorithm (RDA) for divisibility of numbers. In the other words, we study divisibility of numbers with a new algorithm about decreasing the numbers of digits. In this paper, we introduce some new methods for high speed of divisibility in RDA.

AMS subject classification: 13AXX, 13F15
Keywords: Congruence, Divisibility, Partition of numbers, Reduce Digits Algorithm.

1- INTRODUCTION

In number theory, divisibility methods of whole numbers are very useful because they help us to quickly determine if a number can be divided by n. There are several different methods for divisibility of numbers with many variants, and some of them can be found in [4, 5, 6, 7].For example in [6] presented that numbers which are dividable to 11 should have the (sum of the odd numbered digits) - (sum of the even numbered digits) is divisible by 11 . Similarly some studies are presented for special numbers such as $15,17,19$, etc ($[1,2,3]$). In this paper, we suppose that z $=a_{n} a_{n-1} \ldots a_{1}$ and $w=b_{m} b_{m-1} \ldots b_{1}$ are dividend and odd divisor respectively. Also, we show $z=a_{n} a_{n-1} \ldots a_{1}$ and w $=b_{m} b_{m-1} \ldots b_{1}$ are dividend and prime divisor respectively, then:

1) If $w \mid\left(b_{m} b_{m-1} \ldots b_{2}\right) a_{1}-\left(a_{n} a_{n-1} \ldots a_{2}\right)$ and $b_{1}=1$ then $w \mid z$.
2) If $w \mid(w-(7 w-1) / 10) a_{1}+\left(a_{n} a_{n-1} \ldots a_{2}\right)$ and $b_{1}=3$ then $w \mid z$.
3) $w \mid z$ if $w \mid w-(3 w-1) / 10) a_{1}+\left(a_{n} a_{n-1} \ldots a_{2}\right)$ and $b_{1}=7$ then $w \mid z$.
4) $w \mid z$ if $w \mid w-((9 w-1) / 10) a_{1}+\left(a_{n} a_{n-1} \ldots a_{2}\right)$ and $b_{1}=9$ then $w \mid z$
5) If $w=5$ is prime divisor then the proof of $w \mid z$ is clear.
6) If $w=b_{m} b_{m-1} \ldots b_{1}$ is composite divisor, then with using of fundamental theorem of arithmetic, the proof of $w \mid z$ is obvious.

Also, we show that in [3], if $z=a_{n} a_{n-1} \ldots a_{1}$ and $w=b_{m} b_{m-1} \ldots b_{1}$ are dividend and odd divisor respectively, then:

1) If $\mathrm{z}=\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}-1} \ldots \mathrm{a}_{1}$ is dividend and $\mathrm{w}=\mathrm{b}_{\mathrm{m}} \mathrm{b}_{\mathrm{m}-1} \ldots \mathrm{~b}_{1}$ is odd divisor such that $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=0$, then $\mathrm{w} \mid \mathrm{z}$ if $w \|\left(b_{m} b_{m-1} \ldots b_{3}\right) a_{2} a_{1}-a_{n} a_{n-1} \ldots a_{3} \mid$.
2) If $\mathrm{z}=\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}-1} \ldots \mathrm{a}_{1}$ is dividend and $\mathrm{w}=\mathrm{b}_{\mathrm{m}} \mathrm{b}_{\mathrm{m}-1} \ldots \mathrm{~b}_{1}$ is odd divisor such that $\mathrm{b}_{1}=3, \mathrm{~b}_{2}=4$, then $\mathrm{w} \mid \mathrm{z}$ if $w \|((7 w-1) / 100) a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{3}\right) \mid$.
3) If $\mathrm{z}=\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}-1} \ldots \mathrm{a}_{1}$ is dividend and $\mathrm{w}=\mathrm{b}_{\mathrm{m}} \mathrm{b}_{\mathrm{m}-1} \ldots \mathrm{~b}_{1}$ is odd divisor such that $\mathrm{b}_{1}=7, \mathrm{~b}_{2}=6$, then $\mathrm{w} \mid \mathrm{z}$ if $w\left|\left|((3 w-1) / 100) a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{3}\right)\right|\right.$.
4) If $z=a_{n} a_{n-1} \ldots a_{1}$ is dividend and $w=b_{m} b_{m-1} \ldots b_{1}$ is odd divisor such that $b_{1}=9, b_{2}=8$, then $w \mid z$ if $w\left|\left|((9 w-1) / 100) a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{3}\right)\right|\right.$.

Now, in this paper we study divisibility of numbers with application of RDA.

2- APPLICATION OF REDUCE DIGITS ALGORITHM IN DIVISIBILITY OF NUMBERS AND RESULTS

Theorem 2.1. If $\mathrm{z}=\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}-1} \ldots \mathrm{a}_{1}$ is dividend and $\mathrm{w}=\mathrm{b}_{\mathrm{m}} \mathrm{b}_{\mathrm{m}-1} \ldots \mathrm{~b}_{1}$ is odd divisor such that $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=0, \mathrm{~b}_{3}=0$, then $\mathrm{w} \mid \mathrm{z}$ if $w \|\left(b_{m} b_{m-1} \ldots b_{4}\right) a_{3} a_{2} a_{1}-a_{n} a_{n-1} \ldots a_{4} \mid$.

[^0]
H. Khosravi, P. Jafari and E. Faryad/ Application of Reduce Digits Algorithm in Divisibility of Numbers/ RJPA- 2(9), Sept.-2012.

Proof. If $w \|\left(b_{m} b_{m-1} \ldots b_{4}\right) a_{3} a_{2} a_{1}-a_{n} a_{n-1} \ldots a_{4} \mid$, then there exists an integer k such that
$k w=\left(b_{m} b_{m-1} \ldots b_{4}\right) a_{3} a_{2} a_{1}-a_{n} a_{n-1} \ldots a_{4}$. Therefore,1000kw $=\left(b_{m} b_{m-1} \ldots b_{4}\right) * 1000 a_{3} a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{4}\right) *$ 1000 ,hence we have ($1000 \mathrm{kw}-\mathrm{a}_{3} \mathrm{a}_{2} \mathrm{a}_{1}$) $\mathrm{w}=-\mathrm{z}$, so $\mathrm{w} \mid \mathrm{z}$.

Remark 2.2. In this paper, with using theorems for dividend and odd divisor, we can introduce the new numbers (as same as 0 in follow Example). If we don't know whether a new number is divisible by odd divisor, we should apply the theorems again. In this case, the new numbers are dividend.

Example 2.3. Is 8265015 divisible by 551001 ?
Solution: With using above theorem | (551*15)-8265 | = 0. Therefore, 8265015 is divisible by 551001 .
Example 2.4. Is 8542396580235184251305 divisible by 5872311825742001 ?
Solution: With using above theorem | (5872311825742*305)- 8542396580235184251 |=854060552512833294. But the divisibility 854060552512833294 by 5872311825742001 is not clear. Therefore, with using above theorem for 854060552512833294 to 5872311825742001, we have | (5872311825742*294) - 854060552512833 $\mid=3014760097105110$. Therefore, 8542396580235184251305 is not divisible by 5872311825742001. (3014760097105110<5872311825742001).

Theorem 2.5. If $\mathrm{z}=\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}-1} \ldots \mathrm{a}_{1}$ is dividend and $\mathrm{w}=\mathrm{b}_{\mathrm{m}} \mathrm{b}_{\mathrm{m}-1} \ldots \mathrm{~b}_{1}$ is odd divisor such that $\mathrm{b}_{1}=3, \mathrm{~b}_{2}=4, \mathrm{~b}_{3}=1$, then $\mathrm{w} \mid \mathrm{z}$ if $w\left|\left|((7 w-1) / 1000) a_{3} a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{4}\right)\right|\right.$.

Proof. If $w \|((7 w-1) / 1000) a_{3} a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{4}\right) \mid$, then there exists an integer k such that $k w=((7 w-1) / 1000) a_{3} a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{4}\right)$. Therefore, $\left(1000 k-7 a_{3} a_{2} a_{1}\right) w=-z$, so $w \mid z$.

Example 2.6. Is 28522195 divisible by 78143 ?
Solution: With using above theorem | $(547 * 195)-28522 \mid=78143$. Therefore, 28522195 is divisible by 78143.
Example 2.7. Is 16496634249311499 divisible by 2181375143 ?
Solution: With using above theorem | (15269626*499)- 16496634249311 |=16489014705937. But the divisibility 16489014705937 by 2181375143 is not clear. Therefore, with using above theorem for 16489014705937 to 2181375143 , we have $|(15269626 * 937)-16489014705|=2181375143$. Therefore, 16496634249311499 is divisible by 2181375143.

Theorem 2.8. If $\mathrm{z}=\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}-1} \ldots \mathrm{a}_{1}$ is dividend and $\mathrm{w}=\mathrm{b}_{\mathrm{m}} \mathrm{b}_{\mathrm{m}-1} \ldots \mathrm{~b}_{1}$ is odd divisor such that $\mathrm{b}_{1}=7, \mathrm{~b}_{2}=6, \mathrm{~b}_{3}=6$, then $\mathrm{w} \mid \mathrm{z}$ if $w \|((3 w-1) / 1000) a_{3} a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{4}\right) \mid$.

Proof. If $w \|((3 w-1) / 1000) a_{3} a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{4}\right) \mid$, then there exists an integer k such that
$k w=((3 w-1) / 1000) a_{3} a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{4}\right)$. Therefore, $\left(1000 k-3 a_{3} a_{2} a_{1}\right) w=-z$, so $w \mid z$.
Example 2.9. Is 156481996 divisible by 15667 ?
Solution: With using above theorem | ($47 * 996$)-156481 | = 109669. But the divisibility 109669 by 15667 is not clear. Therefore, with using above theorem for 109669 to 15667 , we have $|(47 * 669)-109|=31334$. Therefore, with using above theorem for 31334 to 15667 , we have $\left|\left(47^{*} 334\right)-31\right|=15667$. Therefore, 156481996 is divisible by 15667 .

Example 2.10. Is 635238182481180927181235820 divisible by 325667 ?
Solution: With using above theorem | $(977 * 820)-635238182481180927181235 \mid=635238182481180926380095$. But the divisibility 635238182481180926380095 by 325667 is not clear. Therefore, with using above theorem for 635238182481180926380095 to 325667 , we have | ($977 * 095$)- $635238182481180926380 \mid=635238182481180833565$ But the divisibility 635238182481180833565 by 325667 is not clear . Therefore, with using above theorem for

635238182481180833565 to 325667 , we have $|(977 * 565)-635238182481180833|=635238182480628828$. But the divisibility 635238182480628828 by 325667 is not clear. Therefore, with using above theorem for 635238182480628828 to 325667 , we have $|(977 * 828)-635238182480628|=635238181671672$. But the divisibility 635238181671672 by 325667 is not clear. Therefore, with using above theorem for 635238181671672 to 325667 , we have | $(977 * 672)-635238181671 \mid=635237525127$. But the divisibility 635237525127 by 325667 is not clear.

Therefore, with using above theorem for 635237525127 to 325667 , we have | ($977 * 127$)- 635237525|=635113464. But the divisibility 635113464 by 325667 is not clear. Therefore, with using above theorem for 635113464 to 325667, we have $|(977 * 464)-635113|=199371$. Therefore, 635238182481180927181235820 is not divisible by 325667 .
(199371<325667).
Remark 2.11. $3^{*} \underbrace{66 \ldots 6}_{\text {n-th }}-1{\stackrel{10}{ }{ }^{\mathrm{n}+1} 0 .[6]}^{6}$
Corollary 2.12. If $\mathrm{z}=\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}-1} \ldots \mathrm{a}_{1}$ is dividend and $\mathrm{w}=\mathrm{b}_{\mathrm{m}} \mathrm{b}_{\mathrm{m}-1} \ldots \mathrm{~b}_{1}$ is odd divisor such that $\mathrm{b}_{1}=7, \mathrm{~b}_{2}=\mathrm{b}_{3}=\ldots=\mathrm{b}_{\mathrm{m}}=6$, then $w \mid z$ if $w \|\left((3 w-1) / 10^{m}\right) a_{m} \ldots a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{m+1}\right) \mid$.

Theorem 2.13. If $z=a_{n} a_{n-1} \ldots a_{1}$ is dividend and $w=b_{m} b_{m-1} \ldots b_{1}$ is odd divisor such that $b_{1}=9, b_{2}=8, b_{3}=8$, then $w \mid z$ if $w\left|\left|((9 w-1) / 1000) a_{3} a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{4}\right)\right|\right.$.

Proof. If $w \|((9 w-1) / 1000) a_{3} a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{4}\right) \mid$, then there exists an integer k such that
$k w=((9 w-1) / 1000) a_{3} a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{4}\right)$. Therefore, (1000k-9 $\left.a_{3} a_{2} a_{1}\right) w=-z$, so $w \mid z$.
Example 2.14. Is 90292806 divisible by 2889 ?
Solution: With using above theorem | (26*806)-90292|=69336. But the divisibility 69336 by 2889 is not clear. Therefore, with using above theorem for 69633 to 2889, we have | (26*336)-69 |=8667=3*2889. Therefore, 90292806 is divisible by 2889 .

Example 2.15. Is 321480154879362731940753142 divisible by 841889 ?
Solution: With using above theorem | (7577*142)-321480154879362731940753|= 321480154879362730864819. But the divisibility 321480154879362730864819 by 841889 is not clear. Therefore, with using above theorem for 321480154879362730864819 to 841889 , we have $|(7577 * 819)-321480154879362730864|=321480154879356525301$. But the divisibility 321480154879356525301 by 841889 is not clear. Therefore, with using above theorem for 321480154879356525301 to 841889 , we have | ($7577 * 301$)- $321480154879356525 \mid=321480154877075848$. But the divisibility 321480154877075848 by 841889 is not clear. Therefore, with using above theorem for 321480154877075848 to 841889 , we have $|(7577 * 848)-321480154877075|=321480148451779$. But the divisibility 321480148451779 by 841889 is not clear. Therefore, with using above theorem for 321480148451779 to 841889 , we have | ($7577 * 779$) - 321480148451|=321474145968. But the divisibility 321474145968 by 841889 is not clear. Therefore, with using above theorem for 321474145968 to 841889 , we have | $(7577 * 968)-321474145 \mid=314139709$. But the divisibility 314139709 by 841889 is not clear. Therefore, with using above theorem for 314139709 to 841889 , we have | ($7577 * 709$) - 314139|=5057954. But the divisibility 5057954. by 841889 is not clear. Therefore, with using above theorem for 5057954 to 841889 , we have $|(7577 * 954)-5057|=7223401$. But the divisibility 7223401 by 841889 is not clear. Therefore, with using above theorem for 7223401 to 841889 , we have | $(7577 * 401)-7223 \mid=3031154$. But the divisibility 3031154 by 841889 is not clear. Therefore, with using above theorem for 3031154 to 841889 , we have | (7577*154) - 3031|=1163827. Therefore, 321480154879362731940753142 is not divisible by 841889 .

Remark 2.16. $9 * \underbrace{88 \ldots 8}_{n-\text { th }} 9-1 \xlongequal[\equiv]{10}^{\mathrm{n}+1} 0$. [6]
Corollary2.17. If $\mathrm{z}=\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}-1} \ldots \mathrm{a}_{1}$ is dividend and $\mathrm{w}=\mathrm{b}_{\mathrm{m}} \mathrm{b}_{\mathrm{m}-1} \ldots \mathrm{~b}_{1}$ is odd divisor such that $\mathrm{b}_{1}=9, \mathrm{~b}_{2}=\mathrm{b}_{3}=\ldots=\mathrm{b}_{\mathrm{m}}=8$, then $w \mid z$ if $w \|\left((9 w-1) / 10^{m}\right) a_{m} \ldots a_{2} a_{1}-\left(a_{n} a_{n-1} \ldots a_{m+1}\right) \mid$.

3- ACKNOWLEDGEMENTS

The authors thank the research council of Mashhad Branch (Islamic Azad University) for support.
Also, we would like to thank the referee for his/her many helpful suggestions.

REFERENCES

[1] H. Khosravi, P. Jafari, V. T. Seifi, A New Algorithm For Divisibility of Numbers, World Applied Sciences Journal, Vol. 18 (6), (2012), 786-787.
[2] H. Khosravi, H. Golmakani and H. M. Mohammadinezhad, Divisibility For All Numbers, Research Journal of Pure Algebra, (2011), 161-163.
[3] H. Khosravi, P. Jafari, H. Golmakani, Reduce Digits Algorithm for Divisibility of odd Numbers, Global Journal of Pure and Applied Mathematics, Vol. 8, Number 4, (2012), 379-381.
[4] P. Pollack, Not Always Buried Deep, A Second Course in Elementary Number Theory, Amer. Math. Soc, Providence, 2009.
[5] W. E. Clark, Elementary Number Theory, University of South Florida, 2002.
[6] G. Everest, T. Ward, An Introduction to Number Theory, Graduate Text 232, Springer, 2005.
[7] W. Stein, Elementary Number Theory, Springer, 2009.

Source of support: Nil, Conflict of interest: None Declared

[^0]: * Corresponding author: H. Khosravi*, Department of Mathematics, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, P. Box 91735-413, Iran

