COFINITELY WEAK RAD-SUPPLEMENTED MODULES

S. K. Choubey*, B. M. Pandeya**, A. J. Gupta† and H. Ranjan‡

Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, Varanasi-221005, India

(Received on: 29-02-12; Accepted on: 27-09-12)

ABSTRACT

Let R be a ring and M be an R-module. M is called cofinitely weak Rad-supplemented module if every cofinite submodule of M has a weak Rad-supplement in M. If every cofinite submodule of M has ample weak Rad-supplements in M, then M is called amply cofinitely weak Rad-supplemented module. In this paper we study some properties of such type of modules.

Mathematics Subject Classification: 16D10, 16D99.

Key words: Cofinitely supplemented module, Cofinitely Rad-supplemented module, cofinitely weak Rad-supplemented module, amply cofinitely weak Rad-supplemented module

1. INTRODUCTION

Throughout this paper all rings are associative rings with identity and all modules are unital left R-modules. Let R be a ring and M be an R-module. The notation $N \subseteq M$ means that N is a submodule of M. A submodule K of an R-module M is called small in M (denoted by $K \ll M$) if $K+L=M$ for any submodule L of M implies $L=M$, see [1]. $\text{Rad}(M)$ indicates the Jacobson radical of M. A module M is called semi-hollow if every finitely generated proper submodule is small in M, or $\text{Rad}(M)=M$, see [2]. Let M be an R-module and A and B be any submodules of M. B is called a supplement of A in M if B is minimal with respect to $M=A+B$. B is a supplement of A in M iff $M=A+B$ and $A \cap B \ll B$, (see [2] 20.1). M is called supplemented if every submodule of M has a supplement in M. Artinian and semisimple modules are supplemented modules. For $A \subseteq M$, a submodule B of M is called a weak supplement of A in M if $A+B=M$ and $A \cap B \ll M$ (see [12], 1.3). An R-module M is called weakly supplemented if every submodule of M has a weak supplement in M. Clearly supplemented modules are weakly supplemented. Artinian, semisimple and hollow modules are weakly supplemented modules.

A submodule K of a module M is said to be cofinite if the factor module M/K is finitely generated. If every cofinite submodule of M has a supplement in M then M is called a cofinitely supplemented module, see [3]. An R-module M is called a cofinitely weak supplemented module (or briefly a cws-module) if every cofinite submodule has a weak supplement. Clearly cofinitely supplemented module and weakly supplemented module are cofinitely weak supplemented and a finitely generated proper submodule is small in M. Cofinitely supplemented module and weakly supplemented module are cofinitely weak supplemented modules. Cofinitely supplemented modules are weakly supplemented. Artinian, semisimple and hollow modules are weakly supplemented modules.

Let M be an R-module and let U be a submodule of M. A submodule V of M is called a Rad-supplement of U in M (according to [5], generalized supplement) if $U+V=M$ and $U \cap V \subseteq \text{Rad}(V)$. An R-module M is called Rad-supplemented (according to [5], generalized supplemented or a GS-module) if every submodule of M has aRad-supplement in M. A submodule V of M is called a weak Rad-supplement of U in M if $U+V=M$ and $U \cap V \subseteq \text{Rad}(M)$. An R-module M is called weakly Rad-supplemented (according to [5], generalized weakly supplemented or a WGS-module) if every submodule of M has a weak Rad-supplement in M. The Z-module Q is Rad-supplemented as well as weak Rad-supplemented modules but the Z-module Q is not supplemented. Let M be an R-module. If every cofinite submodule of M has a Rad-supplement in M then M is called a cofinitely Rad-supplemented module.

Corresponding author: S. K. Choubey, Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, Varanasi-221005, India
Let M be an R-module and $N \in \sigma [M]$, subcategory of left R-modules subgenerated by M. A projective module P in $\sigma [M]$ together with a small epimorphism $\pi : P \to N$ is called a projective cover of N in $\sigma [M]$. A module N in $\sigma [M]$ is called semiperfect in $\sigma [M]$ if every factor module of N has a projective cover in $\sigma [M]$. A projective module in $\sigma [M]$ is semiperfect in $\sigma [M]$ if and only if it is (amply) supplemented (see [1], 42.3).

2. COFINITELY WEAK RAD-SUPPLEMENTED MODULE

In this section, we discuss the concept of cofinitely weak Rad-supplemented modules and give some properties of such type of modules.

Definition 2.1. Let M be an R-module. M is called a cofinitely weak Rad-supplemented module if every cofinite submodule of M has a weak Rad-supplement in M.

Lemma 2.2. Let M be an R-module and V be a weak Rad-supplement of U in M. Then $(V + L)/L$ is a weak Rad-supplement of U/L in M/L for every submodule L of U.

Proof: See [6, Lemma II. 1]

Theorem 2.3. Let M be an R-module and N be a nonzero semi-hollow submodule of M. Then M is cofinitely weak Rad-supplemented iff M/N is cofinitely weak Rad-supplemented.

Proof: Let M be a cofinitely weak Rad-supplemented module. Let U be a submodule of M and N be a nonzero semi-hollow submodule of M. Consider U/N is a cofinite submodule of M/N, then U is cofinite. Since M is cofinitely weak Rad-supplemented module, then there is a submodule V of M such that $U + V = M$ with $U \cap V \subseteq \text{Rad} M$. By lemma 2.2, $(V + N)/N$ is a weak Rad-supplement of U/N in M/N. Hence M/N is cofinitely weak Rad-supplemented.

Conversely, Let U be a cofinite submodule of M. Then $(U + N)/N$ is a cofinite submodule of M/N. Since M/N is cofinitely weak Rad-supplemented, $(U + N)/N$ has a weak Rad-supplement in M/N. Suppose V/N is weak Rad-supplement of $(U + N)/N$ in M/N. Then $V/N + (U + N)/N = M/N \Rightarrow (U + V)/N = M/N \Rightarrow U + V = M$ and $V/N \cap (U + V)/N \subseteq \text{Rad} (M/N) \Rightarrow (U \cap V)/N \subseteq \text{Rad} M \Rightarrow (U \cap V)/N \subseteq \text{Rad} M/N$ (since N is semi-hollow module, so $\text{Rad} N = N$) $\Rightarrow U \cap V \subseteq \text{Rad} M$. Hence M is a cofinitely weak Rad-supplemented.

Proposition 2.4. Suppose that M be a cofinitely weak Rad-supplemented module and N be a submodule with $\text{Rad} M \subseteq N$. If $\text{Rad} (M/N) = \{N\}$, then every cofinite submodule of M/N is a direct summand of M/N.

Proof: Let M be a cofinitely weak Rad-supplemented module and M/N be any factor module of M. For $N \subseteq K$, let K/N be a cofinite submodule of M/N, then M/N is finitely generated. Now $M/K \cong M/N$ K/N therefore, M/K is finitely generated. Hence K is a cofinite submodule of M. Since M is cofinitely weak Rad-supplemented module, therefore, there is a submodule V of M such that $K + V = M$ and $K \cap V \subseteq \text{Rad} M$. According to the lemma 2.2, $(V + N)/N$ is a weak Rad-supplement of K/N in M/N. Hence $K/N + (V + N)/N = M/N \Rightarrow (K + V)/N = M/N \Rightarrow K + V = M$ and $(V + N)/N \cap K/N \subseteq \text{Rad} (M/N) = \{N\}$. Since $\text{Rad} M \subseteq N$, we know $\{N\} \subseteq (V + N)/N \cap K/N$, therefore we have $(V + N)/N \cap K/N = \{N\}$. Hence K/N is a direct summand of M/N.

Corollary 2.5. Let M be a cofinitely weak Rad-supplemented module. Then every cofinite submodule of $M/\text{Rad} M$ is a direct summand of $M/\text{Rad} M$.

Lemma 2.6. If $f : M \to N$ is a homomorphism and a submodule L of M containing $\ker f$ is a weak Rad-supplement in M, then $f(L)$ is a weak Rad-supplement in $f(M)$.
Proof: Let M, N be R-modules and $f : M \to N$ be a homomorphism. If L is a weak Rad-supplement of K in M, then we have $M = L + K \Rightarrow f(M) = f(L) + f(K)$ and since $L \cap K \subseteq \text{Rad } M$ we have $f(L \cap K) \subseteq f(\text{Rad } M) \subseteq \text{Rad } f(M)$. As $\ker f \subseteq L$, $f(L \cap f(K)) = f(L \cap K)$ i.e. $f(L \cap f(K)) \subseteq \text{Rad } f(M)$. So $f(L)$ is a weak Rad-supplement of $f(K)$ in $f(M)$.

Proposition 2.7. Every homomorphic image of cofinitely weak Rad-supplemented module is a cofinitely weak Rad-supplemented module.

Proof: Suppose that $f : M \to N$ be a homomorphism and M be a cofinitely weak Rad-supplemented module. Let K be a cofinite submodule of $f(M)$, then $M / f^{-1}(K) \cong (M / \ker f) / (f^{-1}(K)) / \ker f \cong f(M) / K$. Therefore, $M / f^{-1}(K)$ is finitely generated. Since M is a cofinitely weak Rad-supplemented module, $f^{-1}(K)$ is a weak Rad-supplemented module in M and according to the lemma 2.6, $K = f(f^{-1}(K))$ is a weak Rad-supplement in $f(M)$.

Corollary 2.8. Any factor module of a cofinitely weak Rad-supplemented module is a cofinitely weak Rad-supplemented module.

3. AMPLY COFINITELY WEAK RAD-SUPPLEMENTED MODULES

In this section, we show the concept of amply cofinitely weak Rad-supplemented modules and give some properties of such type of modules.

Definition 3.1. Let M be an R-module. If every cofinite submodule of M has ample weak Rad-supplements in M then M is called amply cofinitely weak Rad-supplemented module.

Proposition 3.2. Every factor module of an amply cofinitely weak Rad-supplemented module is amply cofinitely weak Rad-supplemented.

Proof: Let M be an amply cofinitely weak Rad-supplemented module. For $A \subseteq X \subseteq M$, let M / A be any factor module of M and X / A be a cofinite submodule of M / A, then $M / A \cong X / A$ is finitely generated. Now $M / X \cong M / A \cong X / A$.

M / X is also finitely generated. Hence X is a cofinite submodule of M. Suppose $X / A + Y / A = M / A$ for some submodule Y / A of M / A, then $X + Y = M$. Since X is cofinite and M is amply cofinitely weak Rad-supplemented, there is a submodule B of Y such that B is a weak Rad-supplement of X in M. By lemma 2.2, $(B + A) / A$ is a weak Rad-supplement of X / A in M / A. Clearly $(B + A) / A \subseteq Y / A$. Hence M / A is amply cofinitely weak Rad-supplemented.

Corollary 3.3. Every homomorphic image of an amply cofinitely weak Rad-supplemented module is amply cofinitely weak Rad-supplemented.

Proof: Let M be an amply cofinitely weak Rad-supplemented module. Since every homomorphic image of M is isomorphic to a factor module of M, then by proposition 3.2, every homomorphic image of M is amply cofinitely weak Rad-supplemented.

The R-module M is called π-projective, if for every submodules U and V with $M = U + V$ there exists a homomorphism $f : M \to M$ such that $\text{Im } f \subseteq U$ and $\text{Im } (1 - f) \subseteq V$ [see, 2].

Proposition 3.4. Let M be a cofinitely weak Rad-supplemented and π-projective module. Then M is amply cofinitely weak Rad-supplemented.

Proof: Let A be a cofinite submodule of M and $A + B = M$ for any submodule B of M. Since M is cofinitely weakly Rad-supplemented and A is a cofinite submodule of M, there exists a weak Rad-supplement T of A in M. Since M is π-projective, there exists an homomorphism $f : M \to M$ such that $\text{Im } f \subseteq B$ and $\text{Im } (1 - f) \subseteq A$. Then we can show $f(A) \subseteq A$ and $(1 - f)(B) \subseteq B$. In this case

$$M = f(M) + (1 - f)(M) = A + f(A + T) = A + f(A) + f(T) = A + f(T).$$
Let \(a \in A + f(T) \). Then there exists \(t \in T \) with \(a = f(t) \). This case \(t - a = t - f(t) = (1 - f)(t) \in A \) and then \(t \in A \). Hence \(t \in A \cap T \) and \(A \cap f(T) \subseteq f(A \cap T) \). By the Hypothesis, since \(A \cap T \subseteq \text{Rad}M \) so \(f(A \cap T) \subseteq f(\text{Rad}M) \). \(A \cap f(T) \subseteq f(A \cap T) \subseteq f(\text{Rad}M) \subseteq \text{Rad}(f(M)) \subseteq \text{Rad}M \). Hence \(f(T) \) is a weak Rad-supplement of \(A \) in \(M \). Since \(f(T) \subseteq B, A \) has ample weak Rad-supplements in \(M \). Thus \(M \) is amply cofinitely weak Rad-supplemented.

Corollary 3.5. Every projective and cofinitely weak Rad-supplemented module is amply cofinitely weak Rad-supplemented.

Proof: We can show that every projective module is \(\pi \)-projective module. Now by the proposition 3.4, every projective and cofinitely weak Rad-supplemented module is amply cofinitely weak Rad-supplemented.

Lemma 3.6. Let \(M \) be an \(R \)-module with small radical and \(A \subseteq M \). If \(A \) has a weak Rad-supplement that is a supplement in \(M \), then \(A \) has a supplement in \(M \).

Proof: Let \(B \) be a weak Rad-supplement of \(A \) in \(M \), then \(A \cap B \subseteq \text{Rad}M \) and so \(A \cap B \ll M \). Since \(B \) is a supplement in \(M \), \(A \cap B \ll B \). Hence \(B \) is a supplement of \(A \) in \(M \).

Theorem 3.7. Let \(M \) be an \(R \)-module with small radical. If \(M \) is amply cofinitely weak Rad-supplemented such that weak Rad-supplements are supplements in \(M \), then \(M \) is amply cofinitely supplemented.

Proof: For proof see lemma 3.6.

Corollary 3.8 Let \(R \) be any ring. If the \(R \)-module \(R \) is weak Rad-supplemented such that weak Rad-supplements are supplements in \(R \), then \(R \) is semiperfect.

ACKNOWLEDGEMENTS: S. K. Choubey and H. Ranjan are thankful to CSIR and NDF, New Delhi, India respectively for awarding the Senior Research Fellowship 2010.

REFERENCES

Source of support: CSIR and NDF, New Delhi, India, Conflict of interest: None Declared