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ABSTRACT 

In this paper we prove a common fixed point theorem for weakly compatible maps in a Menger probabilistic quasi 
metric space. Incidentally, we observe that the result of Sunny Chauhan [12] is not valid through an example and 
modify it suitably. 
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1. INTRODUCTION 

 
Menger [7] introduced the notion of a probabilistic metric space in 1942 and since then the theory of probabilistic 
metric spaces has developed in many directions [11]. The idea of Menger was to use distribution functions instead of 
non-negative real numbers as values of the metric. The notion of a probabilistic metric space corresponds to the 
situations when we do not know exactly the distance between two points; but we know only probabilities of possible 
values of this distance. Such a probabilistic generalization of metric spaces appears to be of interest in the investigation 
of physical quantities and physiological threshold. It is also of fundamental importance in probabilistic functional 
analysis, non-linear analysis and applications [1, 2, 6]. 
 
In this section, some definitions and results in the theory of Menger probabilistic quasi metric spaces (briefly, Menger 
PQM-space) are given to fill in some background. For further information we refer to [3, 8, 10]. 
 
Definition 1.1 [11]: A mapping 𝑇𝑇 ∶ [0,1]  × [0,1] → [0,1] is called a triangle norm or 𝑡𝑡-norm if T satisfies the 
following conditions: 
 
(1) 𝑇𝑇(𝑎𝑎, 1) = 𝑎𝑎   for all   𝑎𝑎 ∈ [0,1] 
(2) 𝑇𝑇(𝑎𝑎, 𝑏𝑏) =  𝑇𝑇 (𝑏𝑏, 𝑎𝑎) 
(3) 𝑇𝑇(𝑐𝑐, 𝑑𝑑) ≥ 𝑇𝑇 (𝑎𝑎,𝑏𝑏) for   𝑐𝑐 ≥ 𝑎𝑎, 𝑑𝑑 ≥ 𝑏𝑏 
(4) 𝑇𝑇(𝑇𝑇(𝑎𝑎, 𝑏𝑏), 𝑐𝑐) =  𝑇𝑇(𝑎𝑎,𝑇𝑇(𝑏𝑏, 𝑐𝑐)) for all 𝑎𝑎,𝑏𝑏, 𝑐𝑐 ∈ [0,1] 
 
The following are the four basic 𝑡𝑡-norms: 
(𝑖𝑖)𝑇𝑇𝑀𝑀 (𝑥𝑥, 𝑦𝑦) = Min{𝑥𝑥, 𝑦𝑦},   (𝑖𝑖𝑖𝑖) 𝑇𝑇𝑃𝑃(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥.𝑦𝑦, 
(𝑖𝑖𝑖𝑖𝑖𝑖)𝑇𝑇(𝑥𝑥,𝑦𝑦) =Max{x + y – 1, 0} 
 
Each 𝑡𝑡-norm 𝑇𝑇 can be extended [10] (by associativity) in a unique way to an 𝑛𝑛-ary operation taking for (𝑥𝑥1, . . , 𝑥𝑥𝑛𝑛 ) ∈
[0,1]𝑛𝑛  (𝑛𝑛 ∈ 𝑁𝑁) the values 
 
 𝑇𝑇1 �𝑥𝑥1,𝑥𝑥2� = 𝑇𝑇(𝑥𝑥1,𝑥𝑥2) and 𝑇𝑇𝑛𝑛 (𝑥𝑥1, … ,𝑥𝑥𝑛𝑛+1) = 𝑇𝑇(𝑇𝑇𝑛𝑛−1(𝑥𝑥1, … ,𝑥𝑥𝑛𝑛 ) , 𝑥𝑥𝑛𝑛+1)  for n ≥ 2 . 
 
Definition 1.2: A 𝑡𝑡-norm 𝑇𝑇 is of Hadzic-type (ℋ -type,in short) and 𝑇𝑇 ∈ ℋ if the family {𝑇𝑇𝑛𝑛 }𝑛𝑛∈𝑁𝑁  of its iterates 
defined, for each 𝑥𝑥 in [0, 1], by 𝑇𝑇0(𝑥𝑥) = 1, 𝑇𝑇𝑛𝑛+1(𝑥𝑥) = 𝑇𝑇(𝑇𝑇𝑛𝑛 (𝑥𝑥),𝑥𝑥), for all 𝑛𝑛 ≥ 0, is equicontinuous at 𝑥𝑥 = 1, that is 
given 𝜀𝜀 ∈ (0,1) , ∃𝛿𝛿 ∈ (0,1) such that 𝑥𝑥 > 1− 𝛿𝛿 ⟹ 𝑇𝑇𝑛𝑛 (𝑥𝑥) > 1− 𝜖𝜖, for all 𝑛𝑛 ≥ 1.                                         
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There is a nice characterization of continuous 𝑡𝑡-norm 𝑇𝑇 of the class ℋ [9]. 
 
Definition1.3 [4]: If 𝑇𝑇 is a 𝑡𝑡-norm and (𝑥𝑥1𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 )  ∈ [0,1]𝑛𝑛  (𝑛𝑛 ∈ 𝑁𝑁), then 𝑇𝑇𝑖𝑖=1

𝑛𝑛  𝑥𝑥𝑖𝑖  is defined recurrently by 1, if 
𝑛𝑛 = 0 and 𝑇𝑇𝑖𝑖=1

𝑛𝑛  𝑥𝑥𝑖𝑖 = 𝑇𝑇(𝑇𝑇𝑖𝑖=1
𝑛𝑛−1 𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑛𝑛 ) for all 𝑛𝑛 ≥ 1. If  (𝑥𝑥𝑖𝑖)𝑖𝑖𝜖𝜖𝑁𝑁  is a sequence of numbers from [0, 1], then 𝑇𝑇𝑖𝑖=1

∞  𝑥𝑥𝑖𝑖 is 
defined as lim𝑛𝑛→∞𝑇𝑇𝑖𝑖=1

𝑛𝑛  𝑥𝑥𝑖𝑖 (this limit always exists) and 𝑇𝑇𝑖𝑖=𝑛𝑛∞  𝑥𝑥𝑖𝑖  as  𝑇𝑇𝑖𝑖=1
∞  𝑥𝑥𝑛𝑛+𝑖𝑖 .  

 
Proposition 1.4: Let {𝑥𝑥𝑛𝑛 }𝑛𝑛∈𝑁𝑁 be a sequence of numbers from [0, 1] such that lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛 = 1 and 𝑡𝑡-norm 𝑇𝑇 be of ℋ-
type. Then lim𝑛𝑛→∞ 𝑇𝑇𝑖𝑖=𝑛𝑛∞  𝑥𝑥𝑖𝑖 = lim𝑛𝑛→∞ 𝑇𝑇𝑖𝑖=1

∞  𝑥𝑥𝑛𝑛+𝑖𝑖 = 1. 
 
Definition 1.5: A mapping F: ℝ+ →  ℝ+ is called a distribution function if it is non-decreasing and left continuous with 
inf𝑡𝑡∈ℝ 𝐹𝐹(𝑡𝑡) = 0 and sup𝑡𝑡∈ℝ 𝐹𝐹(𝑡𝑡) = 1. 

The Heaviside function H is a distribution function defined by   H (t) = �
0 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 0
1 𝑖𝑖𝑖𝑖 𝑡𝑡 > 0

� 

 
The set of all distribution functions is denoted by 𝔇𝔇 and 𝔇𝔇+= {F ∈ 𝔇𝔇 / F (0) = 0}. 
 
Definition 1.6 [8,10]: A Menger PQM-space is a triple (𝑋𝑋,𝐹𝐹,𝑇𝑇) where 𝑋𝑋 is a non empty set, 𝑇𝑇 is a continuous 𝑡𝑡-norm 
and 𝐹𝐹 is a mapping from 𝑋𝑋 × 𝑋𝑋 into 𝔇𝔇+ such that, if 𝐹𝐹𝑝𝑝 ,𝑞𝑞  denotes the value of 𝐹𝐹 at (𝑝𝑝, 𝑞𝑞), then the following conditions 
hold: 
 
(PQM1) 𝐹𝐹𝑝𝑝 ,𝑞𝑞(𝑡𝑡) = 𝐹𝐹𝑞𝑞 ,𝑝𝑝(𝑡𝑡) = 1 for all 𝑡𝑡 > 0 iff 𝑝𝑝 = 𝑞𝑞. 
(PQM2) 𝐹𝐹𝑝𝑝 ,𝑞𝑞(𝑡𝑡 + 𝑠𝑠) ≥ 𝑇𝑇(𝐹𝐹𝑝𝑝 ,𝑟𝑟(𝑡𝑡),𝐹𝐹𝑟𝑟 ,𝑞𝑞(𝑠𝑠) for all 𝑝𝑝,𝑞𝑞, 𝑟𝑟 ∈ 𝑋𝑋 and 𝑡𝑡, 𝑠𝑠 > 0. 
 
Definition 1.7 [8, 10]: Let (𝑋𝑋,𝐹𝐹,𝑇𝑇) be a Menger PQM-space. 
(i) A sequence {𝑥𝑥𝑛𝑛 } is said to be 𝐹𝐹-convergent to 𝑥𝑥 ∈ 𝑋𝑋 if for every 𝜀𝜀 > 0 and 𝜆𝜆 ∈ (0,1) there exists 𝑘𝑘 ∈ 𝑁𝑁 such that 

𝐹𝐹𝑥𝑥𝑛𝑛 ,𝑥𝑥(𝜀𝜀) > 1− 𝜆𝜆 whenever  𝑛𝑛 ≥ 𝑘𝑘.  
(ii) A sequence {𝑥𝑥𝑛𝑛 } in 𝑋𝑋 is called left Cauchy if for every 𝜀𝜀 > 0 and 𝜆𝜆 ∈ (0,1) there exists 𝑘𝑘 ∈ 𝑁𝑁 such that 

𝐹𝐹𝑥𝑥𝑟𝑟 ,𝑥𝑥𝑠𝑠(𝜀𝜀) > 1− 𝜆𝜆 for all 𝑠𝑠 ≥ 𝑟𝑟 ≥ 𝑘𝑘. 
(iii) A Menger PQM-space (𝑋𝑋,𝐹𝐹,𝑇𝑇) is called left complete if every left Cauchy sequence is 𝐹𝐹-convergent to a point in 

𝑋𝑋. 
 
In 1998, Jungck and Rhoades [5] introduced the following concept of weak compatibility. 
 
Definition1.8 [5]: Let 𝐴𝐴 and 𝑆𝑆 be mappings from a Menger PQM-space (𝑋𝑋,𝐹𝐹,𝑇𝑇) into itself. Then the mappings are 
said to be weakly compatible if they commute at their coincidence point, that is 𝐴𝐴𝑥𝑥 = 𝑆𝑆𝑥𝑥 implies that 𝐴𝐴𝑆𝑆𝑥𝑥 = 𝑆𝑆𝐴𝐴𝑥𝑥.  
 
Sunny Chauhan [12] proved the following theorem. 
 
Theorem 1.9: ([12], Theorem2.1) Let 𝐴𝐴,𝐵𝐵, 𝑆𝑆,𝑇𝑇 and 𝐿𝐿 be self maps of a complete Menger probabilistic quasi metric 
space (𝑋𝑋,𝐹𝐹,𝑇𝑇) and suppose the following conditions are satisfied; 
a) 𝐴𝐴𝐵𝐵(𝑋𝑋) ∪ 𝑆𝑆𝑇𝑇(𝑋𝑋) ⊆ 𝐿𝐿(𝑋𝑋) 
b) 𝐿𝐿(𝑋𝑋) is a complete subspace of 𝑋𝑋 
c) The pairs (𝐿𝐿,𝐴𝐴𝐵𝐵) and (𝐿𝐿,𝑆𝑆𝑇𝑇) are weakly compatible 
d) 𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝐴𝐴𝐵𝐵𝑥𝑥 ,𝑆𝑆𝑇𝑇𝑦𝑦 (𝑡𝑡),𝐹𝐹𝑆𝑆𝑇𝑇𝑥𝑥 ,𝐴𝐴𝐵𝐵𝑦𝑦 (𝑡𝑡)� ≥ 1− 𝛼𝛼(𝑡𝑡)�1− 𝐹𝐹𝐿𝐿𝑥𝑥 ,𝐿𝐿𝑦𝑦 (𝑡𝑡)� 

 
for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 and every 𝑡𝑡 > 0, where 𝛼𝛼:𝑅𝑅 → (0,1) is a monotonic increasing function.  
 
If lim𝑛𝑛→∞ 𝑇𝑇𝑖𝑖=𝑛𝑛∞ �1− 𝛼𝛼𝑖𝑖(𝑡𝑡)� = 1, then 𝐴𝐴,𝐵𝐵,𝑆𝑆,𝑇𝑇 and 𝐿𝐿 have a unique common fixed point. 
 
The above theorem is not valid. 
 
This is shown in the following example:  
 
Example 1.10: If X = [0, 1] and 𝐴𝐴𝑥𝑥 = 0,𝐵𝐵𝑥𝑥 = 1 and 𝐿𝐿𝑥𝑥 = 𝑥𝑥   for all 𝑥𝑥.    
 
Also take 𝑆𝑆 = 𝐴𝐴 and 𝑇𝑇 = 𝐵𝐵.  Then 𝐴𝐴𝐵𝐵𝑥𝑥 = 𝐴𝐴1 = 0  ∀𝑥𝑥  
 
𝐵𝐵𝐴𝐴 𝑥𝑥 = 𝐵𝐵0 = 1 ∀𝑥𝑥. 𝐹𝐹𝐴𝐴𝐵𝐵𝑥𝑥 ,𝐴𝐴𝐵𝐵𝑦𝑦 (𝑡𝑡) = 𝐹𝐹0,0(𝑡𝑡) =1and (AB, L) is weakly compatible. 
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Hence conditions (a), (b), (c) and (d) of Theorem 1.9 are satisfied for any relevant 𝛼𝛼 and F. But A, B, S, T and L do not 
have a common fixed point. 
 
2. MAIN RESULTS 
 
We first prove a lemma. 
 
Lemma 2.1: Suppose T is a continuous t- norm, {𝑥𝑥𝑛𝑛 } is a sequence in [0, 1] and lim𝑛𝑛→∞ 𝑇𝑇𝑖𝑖=𝑛𝑛∞ 𝑥𝑥𝑖𝑖  = 1. Then𝑥𝑥𝑛𝑛 → 1. 
 
Proof: Let 𝜀𝜀 > 0 .Then by hypothesis, there exists a positive integer N such that  
 
                    𝑇𝑇𝑖𝑖=𝑛𝑛∞ 𝑥𝑥𝑖𝑖 > 1 − 𝜀𝜀  for all 𝑛𝑛 ≥ 𝑁𝑁 
 
so that 𝑇𝑇𝑖𝑖=𝑛𝑛𝑛𝑛+𝑘𝑘𝑥𝑥𝑖𝑖 > 1 − 𝜀𝜀  for all n ≥ N and for every k ≥ 0 
 
Consequently,     𝑥𝑥𝑛𝑛  = 𝑇𝑇𝑖𝑖=𝑛𝑛𝑛𝑛 𝑥𝑥𝑖𝑖 > 1− 𝜀𝜀   for every n ≥ N. 
 
Hence  𝑥𝑥𝑛𝑛→ 1 as n →  ∞ . 
 
Notation 2.2: Throughout the rest of the paper, T stands for a continuous t – norm which satisfies the condition: 
 
lim𝑛𝑛→∞ 𝑇𝑇𝑖𝑖=𝑛𝑛∞ (1− 𝛼𝛼𝑖𝑖(t)) = 1   whenever α : (0, ∞ ) → (0, 1)     ………….( I ) 
 
From the above lemma, it follows that   𝛼𝛼𝑛𝑛 (t) → 1 as n →  ∞ if T satisfies the above condition (I). 
 
Lemma 2.3: Let (X, F,T) be a Menger PQM-space. If a sequence {𝑥𝑥𝑛𝑛 }  in X is such that for every n ∈ N  
 
      𝐹𝐹𝑥𝑥𝑛𝑛 ,𝑥𝑥𝑛𝑛+1

(𝑡𝑡) ≥ 1 − 𝛼𝛼𝑛𝑛 (𝑡𝑡)(1− 𝐹𝐹𝑥𝑥0,𝑥𝑥1
(𝑡𝑡))  for every t > 0,  

 
where 𝛼𝛼: (0,∞) → (0,1) is a monotonic increasing function then the sequence {𝑥𝑥𝑛𝑛 } is a left Cauchy sequence. 
 
Proof:  For every 𝑚𝑚 > 𝑛𝑛, write m = n + k. Let ε > 0 and t > 0 .Then   
             
                       𝐹𝐹𝑥𝑥𝑛𝑛 ,𝑥𝑥𝑛𝑛+𝑘𝑘

(𝑡𝑡)  ≥ 𝑇𝑇𝑖𝑖=0
𝑘𝑘−1(𝐹𝐹𝑥𝑥𝑛𝑛+𝑖𝑖 ,𝑥𝑥𝑛𝑛+𝑖𝑖+1

�𝑡𝑡𝑘𝑘�)   
                                          ≥  𝑇𝑇𝑖𝑖=0

𝑘𝑘−1(1− 𝛼𝛼𝑛𝑛+𝑖𝑖�𝑡𝑡𝑘𝑘�(1− 𝐹𝐹𝑥𝑥0,𝑥𝑥1�
𝑡𝑡
𝑘𝑘�)   

                                          ≥  𝑇𝑇𝑖𝑖=0
𝑘𝑘−1(1− 𝛼𝛼𝑛𝑛+𝑖𝑖�𝑡𝑡𝑘𝑘�) 

                                          ≥  𝑇𝑇𝑗𝑗=𝑛𝑛
𝑛𝑛+𝑘𝑘−1 (1− 𝛼𝛼𝑗𝑗 �𝑡𝑡𝑘𝑘�)    (put n + i = j)  

                                          = 𝑇𝑇𝑗𝑗=𝑛𝑛
𝑚𝑚−1 (1 − 𝛼𝛼𝑗𝑗 � 𝑡𝑡

𝑚𝑚−𝑛𝑛�)      
                                          ≥  𝑇𝑇𝑗𝑗=𝑛𝑛

𝑚𝑚−1  (1 − 𝛼𝛼𝑗𝑗 (𝑡𝑡))       (∵ 𝛼𝛼 is monotonic increasing) 
                                          ≥  𝑇𝑇𝑗𝑗=𝑛𝑛

∞  (1 − 𝛼𝛼𝑗𝑗 (𝑡𝑡))     
                                          >  1- 𝜀𝜀          (for n ≥ N, since (I) holds) 

 
Hence the sequence { 𝑥𝑥𝑛𝑛 } is a left Cauchy sequence. 
 
Corollary 2.4: Let (X, F, T) be a Menger PQM-space. If the sequence {𝑥𝑥𝑛𝑛 }  in X is such that for every n ∈ N  
 

 𝐹𝐹𝑥𝑥𝑛𝑛 ,𝑥𝑥𝑛𝑛+1
(𝑡𝑡) ≥ 1 − 𝛼𝛼𝑛𝑛 (𝑡𝑡)     for every t > 0, 

 
where α : (0,∞) → (0,1) is a monotonic increasing function, then the sequence {𝑥𝑥𝑛𝑛 } is a left  Cauchy sequence. 
 
Proposition 2.5: If (𝑋𝑋,𝐹𝐹,𝑇𝑇) is a PQM-space then (𝑋𝑋,𝐸𝐸,𝑇𝑇) is a Menger probabilistic metric space where 𝐸𝐸𝑥𝑥 ,𝑦𝑦(𝑡𝑡) =
min{ 𝐹𝐹𝑥𝑥,𝑦𝑦(𝑡𝑡),𝐹𝐹𝑦𝑦 ,𝑥𝑥(𝑡𝑡)} 
 
Proof:  𝐸𝐸𝑥𝑥 ,𝑦𝑦(𝑡𝑡) = min{𝐹𝐹𝑥𝑥,𝑦𝑦(𝑡𝑡),𝐹𝐹𝑦𝑦,𝑥𝑥(𝑡𝑡)}  for x, y ∈ X 
 
Clearly 𝐸𝐸𝑥𝑥 ,𝑦𝑦(𝑡𝑡) = 𝐸𝐸𝑦𝑦 ,𝑥𝑥(𝑡𝑡)  
 
𝐸𝐸𝑥𝑥 ,𝑦𝑦(𝑡𝑡) = 1 ⇔ 𝐹𝐹𝑥𝑥,𝑦𝑦(𝑡𝑡) = 1 𝑎𝑎𝑛𝑛𝑑𝑑 𝐹𝐹𝑦𝑦 ,𝑥𝑥(𝑡𝑡) = 1 
                     ⇔ 𝑥𝑥 = 𝑦𝑦 
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min�𝐹𝐹𝑥𝑥,𝑧𝑧(𝑡𝑡 + 𝑠𝑠),𝐹𝐹𝑧𝑧,𝑥𝑥(𝑡𝑡 + 𝑠𝑠)� ≥ 𝑇𝑇 �𝐸𝐸𝑥𝑥,𝑦𝑦(𝑡𝑡),𝐸𝐸𝑦𝑦 ,𝑧𝑧(𝑠𝑠)� 
                                               = 𝑇𝑇�𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝑥𝑥,𝑦𝑦(𝑡𝑡),𝐹𝐹𝑦𝑦 ,𝑥𝑥(𝑡𝑡)�,𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝑦𝑦 ,𝑧𝑧(𝑠𝑠),𝐹𝐹𝑧𝑧,𝑦𝑦(𝑠𝑠)�� 
 
𝑎𝑎𝑛𝑛𝑑𝑑 𝐹𝐹𝑥𝑥,𝑧𝑧(𝑡𝑡 + 𝑠𝑠) ≥ 𝑇𝑇 �𝐹𝐹𝑥𝑥,𝑦𝑦(𝑡𝑡),𝐹𝐹𝑦𝑦,𝑧𝑧(𝑠𝑠)� ≥ 𝑇𝑇 �𝐸𝐸𝑥𝑥 ,𝑦𝑦(𝑡𝑡),𝐸𝐸𝑦𝑦 ,𝑧𝑧(𝑠𝑠)� 
 
𝐹𝐹𝑧𝑧,𝑥𝑥(𝑠𝑠 + 𝑡𝑡) ≥ 𝑇𝑇�𝐹𝐹𝑧𝑧,𝑦𝑦(𝑡𝑡),𝐹𝐹𝑦𝑦,𝑥𝑥(𝑡𝑡)� ≥ 𝑇𝑇�𝐸𝐸𝑧𝑧,𝑦𝑦(𝑠𝑠),𝐸𝐸𝑦𝑦 ,𝑥𝑥(𝑡𝑡)� 
 
∴ 𝐸𝐸𝑥𝑥 ,𝑧𝑧(𝑡𝑡 + 𝑠𝑠) ≥ 𝑇𝑇�𝐸𝐸𝑥𝑥,𝑦𝑦(𝑡𝑡),𝐸𝐸𝑦𝑦 ,𝑧𝑧(𝑠𝑠)� 
 
∴ If (𝑋𝑋,𝐹𝐹,𝑇𝑇) is a PQM-space then (𝑋𝑋,𝐸𝐸,𝑇𝑇) is a Menger probabilistic metric space. 
 
Definition 2.6: E is called the induced probabilistic metric on X induced by the quasi probabilistic metric F. 
 
Theorem 2.7: Let (𝑋𝑋,𝐹𝐹,𝑇𝑇) be a complete Menger probabilistic metric space and let  𝑔𝑔,𝐿𝐿:𝑋𝑋 → 𝑋𝑋 be maps that satisfy 
the following conditions:  
 
(a) 𝑔𝑔(𝑋𝑋) ⊆ 𝐿𝐿(𝑋𝑋) ; 
(b) 𝐿𝐿(𝑋𝑋) is a complete subspace of 𝑋𝑋; 
(c) 𝐹𝐹𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦 (𝑡𝑡) ≥ 1 − 𝛼𝛼(𝑡𝑡)�1− 𝐹𝐹𝐿𝐿𝑥𝑥 ,𝐿𝐿𝑦𝑦 (𝑡𝑡)� for each 𝑡𝑡 > 0 and for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, where 𝛼𝛼: (0,∞) → (0,1) is a monotonic 

increasing function.   
        If  lim𝑛𝑛→∞ 𝑇𝑇𝑖𝑖=𝑛𝑛∞ (1− 𝛼𝛼𝑖𝑖 (t)) = 1 then 𝑔𝑔 and L  have a unique point of coincidence. If further 
(d) The pair (L,𝑔𝑔) is weakly compatible, then L and 𝑔𝑔 have a unique common fixed point. 
 
Proof: 𝐿𝐿𝐿𝐿𝑡𝑡 𝑥𝑥0 ∈ 𝑋𝑋. From condition (a), we can find 𝑥𝑥1, such that  𝐿𝐿(𝑥𝑥1) = 𝑔𝑔(𝑥𝑥0). 
 
Inductively, we define a sequence {𝑥𝑥𝑛𝑛 } such that 𝐿𝐿𝑥𝑥𝑛𝑛+1 = 𝑔𝑔𝑥𝑥𝑛𝑛  for n = 0, 1, 2, … 
 
Now, by taking 𝑥𝑥 = 𝑥𝑥𝑛𝑛−1 and 𝑦𝑦 = 𝑥𝑥𝑛𝑛  in (c), we get, for t > 0, 
 
                

 
                      𝐹𝐹𝑔𝑔𝑥𝑥𝑛𝑛−1,𝑔𝑔𝑥𝑥 𝑛𝑛

(𝑡𝑡) ≥ 1− 𝛼𝛼(𝑡𝑡)�1− 𝐹𝐹𝐿𝐿𝑥𝑥𝑛𝑛−1,𝐿𝐿𝑥𝑥𝑛𝑛 (𝑡𝑡)� 

                                                          ≥ 1− 𝛼𝛼(𝑡𝑡) �1− �1− 𝛼𝛼(𝑡𝑡)�1− 𝐹𝐹𝐿𝐿𝑥𝑥𝑛𝑛−2, 𝐿𝐿𝑥𝑥𝑛𝑛−1 (𝑡𝑡)��� 

                                                          ≥ 1− 𝛼𝛼2(𝑡𝑡)�1− 𝐹𝐹𝐿𝐿𝑥𝑥𝑛𝑛−2,𝐿𝐿𝑥𝑥𝑛𝑛−1 (𝑡𝑡)� 
and by induction we get    
    
                                    

 
𝐹𝐹𝐿𝐿𝑥𝑥𝑛𝑛 ,𝐿𝐿𝑥𝑥 𝑛𝑛+1

(𝑡𝑡) ≥ 1− 𝛼𝛼𝑛𝑛 (𝑡𝑡)�1− 𝐹𝐹𝐿𝐿𝑥𝑥0,𝐿𝐿𝑥𝑥1� for 𝑛𝑛 = 1,2, … 

 
Now by Lemma 2.3, {𝐿𝐿𝑥𝑥𝑛𝑛 } is a left Cauchy sequence. 
 
Since the space 𝐿𝐿(𝑋𝑋)  is left complete,  
 
there exists 𝑧𝑧 ∈ 𝐿𝐿(𝑋𝑋)  ,    such that  lim𝑛𝑛→∞ 𝐿𝐿𝑥𝑥𝑛𝑛 = 𝑧𝑧. 
 
Hence  lim𝑛𝑛→∞ 𝑔𝑔𝑥𝑥𝑛𝑛−1 = lim𝑛𝑛→∞ 𝐿𝐿𝑥𝑥𝑛𝑛 = 𝑧𝑧 . 
 
Since 𝑧𝑧 ∈  𝐿𝐿(𝑋𝑋), it follows that there exists 𝑣𝑣 ∈ 𝑋𝑋 such that 𝐿𝐿(𝑣𝑣) = 𝑧𝑧. 
 
We prove that 𝑔𝑔𝑣𝑣 = 𝑧𝑧. 
 
Put 𝑥𝑥 = 𝑥𝑥𝑛𝑛−1 and 𝑦𝑦 = 𝑣𝑣 in(𝑐𝑐). We get 
 
𝐹𝐹𝑔𝑔𝑥𝑥𝑛𝑛−1,𝑔𝑔𝑣𝑣(𝑡𝑡) ≥ 1− 𝛼𝛼(𝑡𝑡)�1− 𝐹𝐹𝐿𝐿𝑥𝑥𝑛𝑛 ,𝐿𝐿𝑣𝑣(𝑡𝑡)�  
 
On letting 𝑛𝑛 → ∞ we get  
 
𝐹𝐹𝑧𝑧,𝑔𝑔𝑣𝑣 (𝑡𝑡) ≥ 1− 𝛼𝛼(𝑡𝑡)�1− 𝐹𝐹𝑧𝑧 ,𝑧𝑧(𝑡𝑡)�  
 
so that 𝐹𝐹𝑧𝑧 ,𝑔𝑔𝑣𝑣(𝑡𝑡) = 1. This is true for all t > 0.         
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∴ 𝑔𝑔𝑣𝑣 = 𝑧𝑧. 

 
Thus v is a point of coincidence to 𝑔𝑔 and L.  Suppose  𝑔𝑔𝑥𝑥 = 𝐿𝐿𝑥𝑥. 
 
Then,             𝐹𝐹𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑣𝑣 (𝑡𝑡) ≥ 1− 𝛼𝛼(𝑡𝑡)�1− 𝐹𝐹𝐿𝐿𝑥𝑥 ,𝐿𝐿𝑣𝑣(𝑡𝑡)�  
                                     = 1− 𝛼𝛼(𝑡𝑡)�1− 𝐹𝐹𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑣𝑣 (𝑡𝑡)� 
 
So that          0 ≥ (1− 𝛼𝛼(𝑡𝑡)) �1− 𝐹𝐹𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑣𝑣(𝑡𝑡)� 
 
Consequently  1− 𝐹𝐹𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑣𝑣(𝑡𝑡) = 0   ∀ 𝑡𝑡 > 0 . 
 
Similarly, we can show that    1− 𝐹𝐹𝑔𝑔𝑣𝑣 ,𝑔𝑔𝑥𝑥 (𝑡𝑡)  = 0   ∀ 𝑡𝑡 > 0. 
 
Hence   𝑔𝑔𝑥𝑥 = 𝑔𝑔𝑣𝑣.   Thus  𝑔𝑔 and L have a unique coincidence point. 
 
Suppose the pair (𝐿𝐿,𝑔𝑔) is weakly compatible. 
 
Then 𝑔𝑔𝑣𝑣 = 𝑧𝑧 = 𝐿𝐿𝑣𝑣 implies that 𝐿𝐿𝑔𝑔(𝑣𝑣) = 𝑔𝑔𝐿𝐿(𝑣𝑣) so that 𝐿𝐿𝑧𝑧 =𝑔𝑔𝑧𝑧. 
 
Thus, z and 𝑔𝑔𝑧𝑧 are coincidence points of  𝑔𝑔 and L. 
 
Hence 𝑔𝑔𝑧𝑧 = 𝑧𝑧    so that  𝐿𝐿𝑧𝑧 = 𝑔𝑔𝑧𝑧 = 𝑧𝑧. 
 
Consequently z is a common fixed point of L and 𝑔𝑔. 
 
Since, under (d) every fixed point is a coincidence point, L and 𝑔𝑔 have unique common fixed point. 
 
Now we have the following corollary which can be treated as a modification of Theorem 1.9. 
 
Corollary 2.8: Let 𝐴𝐴,𝐵𝐵, 𝑆𝑆,𝑇𝑇 and 𝐿𝐿 be self maps of a complete Menger probabilistic quasi metric space(𝑋𝑋,𝐹𝐹,𝑇𝑇) and 
suppose the following conditions are satisfied: 
 
(i) 𝐴𝐴𝐵𝐵(𝑋𝑋) ∪ 𝑆𝑆𝑇𝑇(𝑋𝑋) ⊆ 𝐿𝐿(𝑋𝑋) ; 
(ii) 𝐿𝐿(𝑋𝑋) is a complete subspace of𝑋𝑋; 
(iii) The pairs (𝐿𝐿,𝐴𝐴𝐵𝐵) and (𝐿𝐿,𝑆𝑆𝑇𝑇) are weakly compatible; 
(iv) 𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝐴𝐴𝐵𝐵𝑥𝑥 ,𝑆𝑆𝑇𝑇𝑦𝑦 (𝑡𝑡),𝐹𝐹𝑆𝑆𝑇𝑇𝑥𝑥 ,𝐴𝐴𝐵𝐵𝑦𝑦 (𝑡𝑡)� ≥ 1− 𝛼𝛼(𝑡𝑡)�1− 𝐹𝐹𝐿𝐿𝑥𝑥 ,𝐿𝐿𝑦𝑦 (𝑡𝑡)�for all 𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋 and every 𝑡𝑡 > 0, where 𝛼𝛼: (0,∞) →

(0,1) is a monotonic increasing function. 
(v)  A, B and L commute and S, T and L commute. 
 
If  lim𝑛𝑛→∞ 𝑇𝑇𝑖𝑖=𝑛𝑛∞ (1 − 𝛼𝛼𝑖𝑖(t)) = 1, then 𝐴𝐴,𝐵𝐵, 𝑆𝑆,𝑇𝑇 and 𝐿𝐿 have a unique common fixed point. 
 
Proof: If we put 𝑥𝑥 = 𝑦𝑦 in condition (iv) of the above theorem we obtain that 
 

𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝐴𝐴𝐵𝐵𝑦𝑦 ,𝑆𝑆𝑇𝑇𝑦𝑦 (𝑡𝑡),𝐹𝐹𝑆𝑆𝑇𝑇𝑦𝑦 ,𝐴𝐴𝐵𝐵𝑦𝑦 (𝑡𝑡)� ≥ 1 − 𝛼𝛼(𝑡𝑡)�1− 𝐹𝐹𝐿𝐿𝑦𝑦 ,𝐿𝐿𝑦𝑦 (𝑡𝑡)� 
 
so that  𝐹𝐹𝐴𝐴𝐵𝐵𝑦𝑦 ,𝑆𝑆𝑇𝑇𝑦𝑦 (𝑡𝑡) = 1  and   𝐹𝐹𝑆𝑆𝑇𝑇𝑦𝑦 ,𝐴𝐴𝐵𝐵𝑦𝑦 (𝑡𝑡) = 1 
 
Hence      𝐴𝐴𝐵𝐵𝑦𝑦 = 𝑆𝑆𝑇𝑇𝑦𝑦    for all    𝑦𝑦 ∈ 𝑋𝑋. 
 
Thus 𝐴𝐴𝐵𝐵 = 𝑆𝑆𝑇𝑇. 
 
If we take, 𝐴𝐴𝐵𝐵 = 𝑔𝑔 in Theorem 2.7, AB and 𝑔𝑔 have a unique common fixed point, say z. 
 
Then     AB z = L z = z  
 
So that 𝐴𝐴𝐵𝐵(𝐴𝐴 𝑧𝑧) = 𝐴𝐴𝐴𝐴𝐵𝐵𝑧𝑧 =  𝐴𝐴𝐿𝐿𝑧𝑧 = 𝐴𝐴𝑧𝑧 =  𝐴𝐴𝐿𝐿𝑧𝑧 =  𝐿𝐿(𝐴𝐴𝑧𝑧). 
 
Thus Az is also fixed point of AB and L. 
 
Similarly Bz is also fixed point of AB and L. 
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By the uniqueness of fixed point, follows that 𝐴𝐴𝑧𝑧 =  𝑧𝑧 = 𝐵𝐵𝑧𝑧 =  𝐿𝐿𝑧𝑧. 
 
Thus z is the unique common fixed point of A, B and L. 
 
Similarly we can show that z is the unique common fixed point of S, T and L. (since AB = ST). 
 
Thus A, B, S, T and L have unique common fixed point. 
 
NOTE: 
 
(i) It may be observed that in Example 1.10, A and B do not commute.  
 
(ii) Even through AB = ST in corollary 2.8, it can be shown that A, B, S, T may be different, in view of the following 
Example. 
 
Example 2.9: Let X = [0, 1], 𝐴𝐴𝑥𝑥 = 0,𝐵𝐵𝑥𝑥 = 𝑥𝑥3, 𝑆𝑆𝑥𝑥 = 0,𝑇𝑇𝑥𝑥 = 𝑥𝑥2  𝑎𝑎𝑛𝑛𝑑𝑑 𝐿𝐿𝑥𝑥 = 𝑥𝑥 for all 𝑥𝑥 ∈ 𝑋𝑋. Then  𝐴𝐴𝐵𝐵 = 𝑆𝑆𝑇𝑇 on X and 
all the hypotheses of corollary 2.8 is satisfied. But  𝐵𝐵 ≠ 𝑇𝑇  so that the triad (𝐴𝐴,𝐵𝐵, 𝐿𝐿) is not equal to the triad (𝑆𝑆,𝑇𝑇, 𝐿𝐿). 
 
However A, B, S, T and L have unique common fixed point, namely, 0.   
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