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ABSTRACT 

We introduce Some Special Artex Spaces over bi-monoids namely Complete Artex Spaces over bi-monoids , Lower 
Bounded  Artex  Spaces over  bi-monoids, Upper Bounded Artex Spaces over bi-monoids, Bounded Artex Spaces over 
bi-monoids ,Artex Space homomorphism, Artex Space epimorphism, Artex Space monomorphism, and Artex Space 
isomorphism. We prove the homomorphic image of a Lower Bounded Artex Space over a bi-monoid is a Lower 
Bounded Artex Space over the bi-monoid and the homomorphic image of an Upper Bounded Artex Space over a bi-
monoid is an Upper Bounded Artex Space over the bi-monoid and in general the homomorphic image of a Bounded 
Artex Space over a bi-monoid is a Bounded Artex Space over the bi-monoid. We prove under the Artex Space 
homomorphism the least element goes to the least element and the greatest element goes to the greatest element. Also 
we prove the cartesian product of Lower Bounded Artex Spaces over a bi-monoid is a Lower Bounded Artex Space over 
the bi-monoid and the Cartesian product of Upper Bounded Artex Spaces over a bi-monoid is an Upper Bounded Artex 
Space over the bi-monoid and in general the Cartesian product of Bounded Artex Spaces over a bi-monoid is a 
Bounded Artex Space over the bi-monoid. 
 
 
1. INTRODUCTION  
 
The study of Lattices and Boolean algebra is an interesting one for the algebraist. When George Boole introduced 
Boolean Algebra in 1854, it was new, but, nowadays, they have very important applications in the theory and design of 
computers. There are many other areas such as engineering and science to which Boolean algebra is applied. This 
motivated us to bring our previous paper titled “Artex Spaces over Bi-monoids”, Research Journal of Pure Algebra, 
2(5), May 2012, pages 135- 140. But a theory will help or will be useful or can lead other theories, if the theory itself is 
developed in its own way. As a development of it, now, we extend the theory of Artex spaces over bi-monoids further 
to Some Special Artex Spaces over bi-monoids. We hope the theory of Some Special Artex spaces over bi-monoids 
will play an important role in future and will be useful to computer fields. As special lattices namely complete lattice, 
bounded lattice and other lattices, our Special Artex Spaces over bi-monoids, in future, will play a good role in Discrete 
Mathematics, Science and Engineering, and in Computer fields. 
 
2. PRELIMINARIES  
 
2.1.0 Definitions and Examples 
 
2.1.1 Definition:  Doubly Closed Space: A non-empty set D together with two binary operations denoted by + and .  is 
called a Doubly Closed Space if 
(i)    a.(b+c) = a.b + a.c and 
(ii)   (a+b).c = a.c + b.c, for all a, b, c ϵ D 
 
A Doubly closed space is denoted by (D, + , . ) 
 
2.1.2    Example:  (N, +, . ), where N is the set of all natural numbers, is a Doubly closed space. 
 
2.1.3    Definition:  Bi-monoid: A system (M , + , . ) is called a Bi-monoid if  
1. (M, + ) is a monoid 
2. (M, . ) is a monoid  and  
3.  a.(b + c) = a.b + a.c     and      (a + b).c = a.c + b.c , for all a, b, c ϵ M. 
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In other words, a Doubly closed space (M, +, . ) is called a Bi-monoid if 
 
1. (M, + ) is a monoid and   
2. (M, . ) is a monoid 
 
2.1.4    Example:  Let W= {0, 1, 2, 3,…}. 
 
Then (W, +, . ), where  +  and  .  are the usual addition and multiplication respectively, is a bi-monoid. 
 
2.1.5    Example:  Let S be any set. Consider P(S), the power set of S.  
 
Then P(S) is a bi-monoid under the operations union and intersection. 
 
ie     (P(S) ,ᴜ, ∩) is a bi-monoid. 
 
2.1.6    Example: 1. Let Q’= Q+ ᴜ {0}, where Q+ is the set of all positive rational numbers.  
 
Then Q’ is a bi-monoid under the usual addition and multiplication.  
 
 ie     (Q’, + , . ) is a bi-monoid. 
 
2. Let R’= R+ ᴜ {0}, where R+ is the set of all positive real numbers.  
 
Then R’ is a bi-monoid under the usual addition and multiplication.  
 
 ie     (R’, + , . ) is a bi-monoid. 
 
2.1.7 Definition:  Lattice: A lattice is a partially ordered set (L, ≤) in which every pair of elements a, b ϵ L has a 
greatest lower bound and a least upper bound. 
 
The greatest lower bound of a and b is denoted by aɅb and the least upper bound of a and b is denoted by avb  
 
2.1.8 Definition:  Lattice as Algebraic System: A lattice is an algebraic system ( L , Ʌ , V ) with two binary 
operations Ʌ and V on L which are both commutative, associative, and satisfy the absorption laws namely  
 
aɅ (aVb) = a    and  aV(a Ʌb) = a  
 
The operations Ʌ and V are called cap and cup respectively, or sometimes meet and join respectively. 
 
2.1.9 Definition:  Complete Lattice: A lattice is called a complete lattice if each of its nonempty subsets has a least 
upper bound and a greatest lower bound. 
 
Every finite lattice is a complete lattice and every complete lattice must have a least element and a greatest element. 
 
The least and the greatest elements, if they exist, are called the bounds or units of the lattice and are denoted by 0 and 1 
respectively. 
 
Note : The identity elements of the bi-monoid (M , + , . ) with respect to  +  and  . , if no confusion arises, are also 
denoted by 0 and 1 respectively.  
 
 2.1.10 Definition:  Bounded Lattice: A lattice which has both elements 0 and 1 is called a bounded lattice. 
A bounded lattice is denoted by (L, Ʌ, V, 0, 1) 
 
The bounds 0 and 1 of a lattice (L, Ʌ, V) satisfy the following identities.  
 
For any a ϵ L, a V 0 = a, a Ʌ 1 = a, a V 1 = 1, a Ʌ 0 = 0 
 
2.1.11Definition:  Artex Space Over a Bi-monoid:  Let (M , + , . ) be a bi-monoid. A non-empty set A is said to be an 
Artex Space Over the Bi-monoid (M, + , . ) if       
 
1. (A, Ʌ, V) is a lattice and 
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2.  for each m ϵ M , m ǂ 0, and a ϵ A, there exists an element ma ϵ A satisfying the following conditions: 
 
(i)     m(a Ʌ b) = ma Ʌ mb 
(ii)    m(a V b) = ma V mb 
(iii)   ma Ʌ na ≤ (m +n)a     and   ma V na ≤ (m + n)a   
(iv)   (mn)a = m(na),   for all m,n ϵ M, mǂ0, nǂ0, and a,b ϵ A 
(v)    1.a = a ,  for all  a ϵ A. 
 
Here, ≤ is the partial order relation corresponding to the lattice (A, Ʌ , V)  
 
The multiplication ma is called a bi-monoid multiplication with an artex element or simply bi-monoid multiplication in 
A.  
 
Unless otherwise stated A remains as an Artex space with the partial ordering ≤ which need not be “less than or equal 
to” and M as a bi-monoid with the binary operations + and . need not be the usual addition and usual multiplication.      
 
2.1.12 Example:  Let W = {0, 1, 2, 3,…} and let  Z  be  the set of all integers. 
 
Then (W , + , . ) is a bi-monoid , where + and . are the usual addition and multiplication respectively.  (Z, ≤ ) is a lattice 
in which Ʌ and V are defined by a Ʌ b = mini {a, b} and a V b = maxi {a, b}, for all a, b ϵ Z. 
 
Clearly for each m ϵ W, m ǂ 0, and for each a ϵ Z, there exists ma ϵ Z satisfying the following conditions: 
 
(i)     m(a Ʌ b) = ma Ʌ mb          
(ii)    m(a V b) = ma V mb 
(iii)   ma Ʌ na ≤ (m +n)a      and  ma V na ≤ (m + n)a          
(iv)   (mn)a = m(na), for all m,n ϵ W, mǂ0, nǂ0, and a, b ϵ Z 
(v)    1.a = a , for all a ϵ Z                                                
 
Therefore, Z is an Artex Space Over the Bi-monoid (W , + , . ) 
 
2.1.13 Example:   As defined in Example 2.1.12, Q, the set of all rational numbers is an Artex space over the bi-
monoid W 
 
2.1.14 Example:  As defined in Example 2.1.12, R, the set of all real numbers is an Artex space over the bi-monoid W 
 
2.1.15 Example: As defined in Example 2.1.12, Q, the set of all rational numbers is an Artex space over the bi-monoid 
Q’ = Q + ᴜ {0} 
 
2.1.16 Example:  As defined in Example 2.1.12, R, the set of all real numbers is an Artex space over the bi-monoid  
Q’= Q + ᴜ { 0 } 
 
2.1.17 Example:    As defined in Example 2.1.12, R, the set of all real numbers is an Artex space over the bi-monoid 
R’ = R + ᴜ {0}  
 
Proposition 2.2.1:  Let (L, ≤) be a lattice in which Ʌ and V denote the operations of cap and cup respectively. For any 
a, b ϵ L,   a ≤ b   ‹=›   a Ʌ b = a   ‹=›    a V b = b  
 
3 SOME SPECIAL ARTEX SPACES OVER BI-MONOIDS  
 
3.1 Complete Artex Space over a bi-monoid: An Artex space A over a bi-monoid M is said to be a Complete Artex 
Space if as a lattice, A is a complete lattice, that is each nonempty subset of A has a least upper bound and a greatest 
lower bound. 
 
3.2 Remark: Every Complete Artex space must have a least element and a greatest element. The least and the greatest 
elements, if they exist, are called the bounds or units of the Artex space and are denoted by 0 and 1 respectively. 
 
3.3 Lower Bounded Artex Space over a bi-monoid: An Artex space A over a bi-monoid M is said to be a Lower 
Bounded Artex Space over M if as a lattice, A has the least element 0.                                                                          
 
3.3.1 Example: Let A be the set of all constant sequences (xn) in [0, ∞) and let W = {0, 1, 2, 3,…}.  
 
 



K. Muthukumaran* & M. Kamaraj**/ Bounded Artex Spaces Over Bi-monoids and Artex Space Homomorphisms/ RJPA- 2(7), 
July-2012, Page: 206-216 

© 2012, RJPA. All Rights Reserved                                                                                                                                                                       209  

 
Define ≤ ’, an order relation, on A by for (xn), (yn) in A, (xn) ≤ ’ (yn) means xn  ≤  yn , for each  n  
 
Where ≤ is the usual relation “less than or equal to “ 
 
Since the sequences in A are all constant sequences,  xn  ≤  yn , for some  n  implies xn  ≤  yn , for each  n 
 
Therefore, xn  ≤  yn , for each  n   and  xn  ≤  yn , for  some  n  in this problem are the same. 
 
Let x ϵ A, where x = (xn)  
 
Clearly xn ≤ xn , for each n 
 
So, (xn) ≤’ ( xn) 
 
Therefore, ≤’ is resflexive. 
 
Let x, y ϵ A, where x = (xn) and y = (yn) be such that x ≤’ y and y ≤’ x , that is, (xn) ≤’ ( yn) and (yn) ≤’ ( xn). 
 
Then (xn) ≤’ ( yn) implies  xn  ≤ yn , for each n  
 
and     (yn) ≤’ ( xn) implies yn  ≤  xn , for each n  
 
Now, xn ≤ yn , for each n , and  yn  ≤  xn , for each n ,implies xn = yn , for each n.   
 
Therefore, (xn) = (yn), that is x = y 
 
Therefore, ≤’ is anti-symmetric. 
 
Let  x, y, z ϵ A, where x = (xn), y = (yn) and z = (zn) be such that x ≤’y and y ≤’z, that is, (xn) ≤’( yn) and (yn) ≤’( zn). 
 
Then (xn) ≤’ ( yn) implies  xn  ≤ yn , for each n  
 
           (yn) ≤’ ( zn) implies yn  ≤  zn , for each n  
 
Now, xn  ≤ yn , for each n , and  yn  ≤  zn , for each n, implies xn  ≤  zn for each n.   
 
Therefore, (xn) ≤’ ( zn) 
 
Therefore, ≤’ is transitive. 
 
Hence, ≤’ is a partial order relation on A 
 
Now the cap ,cup operations are defined by the following: 
 
(xn) Ʌ (yn) = (un), where un =mini { xn , yn }, for each n. 
 
(xn) V (yn) = (vn), where vn =maxi { xn , yn }, for each n. 
 
Clearly (A, ≤’) is a lattice. 
 
The bi-monoid multiplication in A is defined by the following : 
 
For each m ϵ W, m ǂ 0, and x ϵ A, where x = (xn), mx is defined by mx = m(xn) = (mxn). 
 
Since (xn) is a constant sequence belonging to A, (mxn) is also a constant sequence belonging to A. 
 
Therefore (mxn) ϵ A 
 
Let x, y ϵ A, where x = (xn) , y = (yn)  and let m ϵ W,mǂ0 
 
Then, it is clear that    
(i)     m(x Ʌ y) = mx Ʌ my          
(ii)    m(x V y) = mx V my 
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(iii)   mx Ʌ nx ≤ (m +n)x      and  mx V nx ≤ (m + n)x          
(iv)   (mn)x = m(nx) , for all m, n ϵ W, m ǂ 0, n ǂ 0, and x, y ϵ A                                                 
(v)    1.x = x, for all  x ϵ A                                                 
 
Therefore, A is an Artex space over W. 
 
The sequence (0n), where 0n is 0 for all n, is a constant sequence belonging to A 
 
Also (0n) ≤ ’ (xn) , for all the sequences (xn) belonging to in A  
 
Therefore, (0n) is the least element of A. 
 
That is, the sequence   0, 0, 0 …    is the least element of A   
 
Hence A is a Lower Bounded Artex space over W. 
 
3.3.2 Example: If A is the set of all constant sequences (xn) in [0,∞) and if Q’= Q + ᴜ { 0 }, then as defined in Example 
3.3.1, A is a Lower Bounded Artex space over Q’. 
 
3.3.3 Example: If A is the set of all constant sequences (xn) in [0,∞) and if R’= R + ᴜ { 0 }, then as defined in Example 
3.3.1, A is a Lower Bounded Artex space over R’.  
 
3.4 Upper Bounded Artex Space over a bi-monoid: An Artex space A over a bi-monoid M is said to be an Upper 
Bounded Artex Space over M if as a lattice, A has the greatest element 1. 
 
3.4.1Example: Let A be the set of all constant sequences (xn) in (-∞, 0] and let W = {0, 1, 2, 3,…}.  
 
Define ≤’, an order relation, on A by for (xn), (yn) in A, (xn) ≤’ (yn) means xn ≤ yn , for n = 1,2,3,… 
 
where ≤ is the usual relation “less than or equal to“ 
 
Then as in Example 3.3.1, A is an Artex space over W. 
 
Now, the sequence (1n), where 1n is 0, for all n, is a constant sequence belonging to A 
 
Also (xn) ≤ ’(1n) , for all the sequences (xn) in A  
 
Therefore, (1n) is the greatest element of A. 
 
That is, the sequence   0, 0, 0 …    is the greatest element of A  
 
Hence A is an Upper Bounded Artex Space over W. 
 
3.4.2 Example:    If A is the set of all constant sequences (xn) in (-∞, 0] and if Q’= Q + ᴜ {0}, then as defined in  
 
Example 3.4.1, A is an Upper Bounded Artex Space over Q’. 
 
3.4.3 Example:    If A is the set of all constant sequences (xn) in (-∞, 0] and if R’= R + ᴜ {0}, then as defined in 
Example 3.4.1, A is an Upper Bounded Artex Space over R’. 
 
3.5 Bounded Artex Space over a bi-monoid: An Artex space A over a bi-monoid M is said to be a Bounded Artex 
Space over M if A is both a Lower bounded Artex Space over M and an Upper bounded Artex Space over M. 
 
3.5.1   Example:  
 
Let A be the set of all constant  sequences ([xn] ) in ( Z 7  ,  + 7 ), where Z7 = { [0],[1],[2],[3],[4],[5],[6]}and let  
 
W = {0, 1, 2, 3,…}.  
 
Define  ≤ ’, an order relation, on A by for ( [xn] ), ( [yn] ) in A, ( [xn] )  ≤ ’  ( [yn] ) means xn  ≤ yn , for each  n  
 
where ≤  is the usual relation “less than or equal to“ As said in the Example 3.3.1, since the sequences in A are all 
constant sequences, xn ≤  yn , for some  n  implies  
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xn  ≤  yn , for each  n. 
 
Let x ϵ A, where x = ([xn])  
 
Clearly xn  ≤ xn , for each n  
 
So, ([xn] ) ≤ ’ ([xn] ) 
 
Therefore, ≤’ is reflexive. 
 
Let  x, y ϵ A, where x = ( [xn] ) and y = ( [yn] ) be such that x  ≤’ y and y ≤’ x , that is, ( [xn] )  ≤ ’ ( [yn] ) and 
 ([yn] ) ≤ ’([xn]). 
 
Then ([xn]) ≤ ’([yn]) implies  xn  ≤ yn , for each n  
 
           ([yn] )  ≤ ’([xn]) implies yn ≤ xn , for each n  
 
Now, xn  ≤ yn , for each n , and  yn ≤ xn , for each n ,implies xn = yn , for each n.   
 
Therefore, ([xn]) = ( [yn] ), that is x = y 
 
Therefore, ≤ ’ is anti-symmetric. 
 
Let  x, y, z ϵ A, where x = ( [xn] ) , y = ( [yn] ) and z = ( [zn] ) be such that x  ≤’  y and y ≤’ z ,  
 
That is, ([xn]) ≤’ ([yn]) and (yn) ≤’ (zn). 
 
Then ([xn]) ≤’ ([yn]) implies  xn  ≤ yn , for each n  
 
           ([yn]) ≤ ’([zn]) implies yn  ≤  zn , for each n  
 
Now, xn  ≤ yn , for each n , and  yn  ≤  zn , for each n, implies xn  ≤  zn for each n.   
 
Therefore, ([xn]) ≤ ’([zn]) 
 
Therefore, ≤’ is transitive. 
 
Hence, ≤ ’ is a partial order relation on A 
 
Now the cap and cup operations on A are defined by the following: 
 
( [xn ]) Ʌ ([yn ]) = ([un]), where un =mini { xn , yn }, for each n. 
 
([xn]) V ([yn]) = ([vn]), where vn =maxi { xn , yn }, for each n. 
 
Clearly (A , ≤ ’) is a lattice. 
 
The bi-monoid multiplication in A is defined by the following: 
 
For each m ϵ W, m ǂ 0, and x ϵ A, where x= ([xn]), mx is defined by mx = m([xn]) = ( [mxn]). 
 
Since ([xn]) is a constant sequence belonging to A, ([mxn]) is also a constant sequence belonging to A. 
 
Therefore, ([mxn]) ϵ A, that is mx ϵ A. 
 
Let  x,y ϵ A, where x = ([xn]) , y = ([yn])  and let m ϵ W,m ǂ 0 
 
Then, it is clear that     
 
(i)     m(x Ʌ y) = mx Ʌ my          
(ii)    m(x V y) = mx V my 
(iii)   mx Ʌ nx ≤ (m +n)x      and  mx V nx ≤ (m + n)x        
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(iv)    (mn)x = m(nx) , for all m,n ϵ W, mǂ0, nǂ0, and x, y ϵ A                                                 
(v)     1.x = x, for all x ϵ A                                                 
 
Therefore, A is an Artex space over W. 
 
The sequence ([0n]), where 0n is 0 for all n, is a constant sequence belonging to A 
 
Also  ([0n])  ≤’ ([xn]) , for all the sequences  ([xn])  in A  
 
Therefore, ([0n]) is the least element of A  
 
Therefore, A is a Lower Bounded Artex space over W. 
 
The sequence ([1n]), where 1n is 6 for all n, is a constant sequence belonging to A 
 
Also ([xn]) ≤’ ([1n]), for all the sequences ([xn]) in A  
 
Therefore, ([1n]) is the greatest element of A  
 
Therefore, A is an Upper Bounded Artex Space over W.       
 
Since A is both a Lower Bounded Artex Space over M and an Upper Bounded Artex Space over W, A is a Bounded  
Artex space over W.  
 
3.6 Artex Space Homomorphism: Let A and B be two Artex spaces over a bi-monoid  M, where Ʌ 1 and V1 are the 
cap, cup of A and Ʌ2 and V2 are the cap, cup of B. A mapping f: A → B is said to be an Artex Space homomorphism if 
 
1. f(a Ʌ1b) = f(a) Ʌ2f(b) 
2. f(a V1b) = f(a) V2f(b) 
3. f(ma)) = mf(a) , for all m ϵ M, m ǂ 0 and a,b ϵ A .                                                               
 
3.7 Artex Space Epimorphism: Let A and B be two Artex spaces over a bi-monoid M.  An Artex Space 
homomorphism f: A → B is said to be an Artex Space epimorphism if the the mapping f: A → B is onto. 
 
3.8 Artex Space Monomorphism: Let A and B be two Artex spaces over a bi-monoid M.  An Artex Space 
homomorphism f: A → B is said to be an Artex Space monomorphism if the mapping f: A → B is one-one. 
 
3.9 Artex Space Isomorphism: Let A and B be two Artex spaces over a bi-monoid M.  An Artex Space 
homomorphism f: A → B is said to be an Artex Space Isomorphism if the mapping f: A → B is both one-one and onto, 
ie, f is bijective. 
 
3.10 Isomorphic Artex Spaces: Two Artex spaces A and B over a bi-monoid M are said to be isomorphic if there 
exists an Artex Space isomorphism from A onto B or from B onto A. 
 
Proposition 3.10.1: Let A be a Lower Bounded Artex space over a bi-monoid M and let B be an Artex space over M.  
 
Let f: A → B be an Artex Space epimorphism of A onto B. Then B is a Lower Bounded Artex Space over M. 
 
In other words, the homomorphic image of a Lower Bounded Artex Space over a bi-monoid is a Lower Bounded Artex 
space over the bi-monoid. 
 
Proof:  Let A be a Lower Bounded Artex Space over a bi-monoid  M and let B be an Artex space over M.  
 
Let f: A → B be an Artex Space epimorphism of A onto B. 
 
Let ≤1  and  ≤2 be the partial orderings of A and B respectively. 
 
Let Ʌ1 and V1 be the cap and cup of A and let Ʌ2 and V2 be the cap and cup of B.     
 
Claim:       x ≤1  y   =>   f(x)  ≤2  f(y) 
 
By proposition 2.2.1,    x  ≤1  y  <=>  x Ʌ1 y = x 
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Therefore, f(x Ʌ1 y) = f(x) 
 
f(x) Ʌ2f(y) = f(x),   (since f is a homomorphism) 
 
Again by Proposition 2.2.1,   f(x) ≤2  f(y)         
 
Let b ϵ B  
 
Since f: A → B is an epimorphism of A onto B, there exists an element a ϵ A such that f(a) = b 
 
Since 0 ≤1 a , by the claim  f(0)  ≤2  f(a) = b 
 
That is, f(0)  ≤2  b, for all b ϵ B. 
 
Since 0 ϵ A, f (0) ϵ B 
 
Therefore, f (0) is the least element of B 
 
Hence B is a Lower Bounded Artex space over M. 
 
Proposition 3.10.2:   Let A be an Upper Bounded Artex space over a bi-monoid M and let B be an Artex space over M.  
 
Let f: A → B be an Artex Space epimorphism of A onto B. Then B is an Upper Bounded Artex space over M. 
 
In other words, the homomorphic image of an Upper Bounded Artex Space over a bi-monoid is an Upper Bounded 
Artex space over the bi-monoid. 
 
Proof:    Let A be an Upper Bounded Artex space over a bi-monoid M and let B be an Artex space over M.   
 
Let f: A → B be an Artex Space epimorphism of A onto B.  
 
Let b ϵ B  
 
Since f: A → B is an epimorphism of A onto B, there exists an element a ϵ A such that f(a) = b 
 
Since a ≤1 1, for all a ϵ A, f (a) ≤2 f (1)  
 
That is, b ≤2 f (1), for all b ϵ B. 
 
Since 1 ϵ A, f (1) ϵ B 
 
Therefore, f (1) is the greatest element of B 
 
Hence B is an Upper Bounded Artex space over M. 
 
Proposition 3.10.3:  Let A be a Bounded Artex space over a bi-monoid M and let B be an Artex space over M.             
 
Let f: A → B be an Artex Space epimorphism of A onto B. Then B is a Bounded Artex space over M. 
 
In other words, the homomorphic image of a Bounded Artex Space over a bi-monoid is a Bounded Artex space over the 
bi-monoid. 
 
Proof: From the Propositions 3.10.1 and 3.10.2, it is clear that B is a bounded Artex space over M. 
 
Proposition 3.10.4: Let A and B be Lower Bounded Artex spaces over a bi-monoid M. If f: A → B is an Artex Space 
epimorphism of A onto B, then f (0) = 0’, where 0 and 0’ are the least elements of A and B respectively. 
 
Proof: Let A and B be Lower Bounded Artex spaces over a bi-monoid M  
 
Let f: A → B be an Artex Space homomorphism. 
 
Suppose 0 and 0’ are the least elements of A and B respectively. 
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Since 0 is the least element of A, 0 ≤1 a, for all a ϵ A.   
 
Since 0’ is the least element of B, 0’≤2 b, for all b ϵ B.   
 
Since f is a homomorphism, x ≤1 y => f(x)  ≤2  f(y) ,  
 
Therefore, 0 ≤1  a, for all a ϵ A implies   f(0)  ≤1  f(a), for all a ϵ A. 
 
Therefore, f (0) is the least element of f (A) 
 
Since f: A → B is onto, f (A) = B. 
 
Or in other way, if b ϵ B, since f is onto, there exists an element a ϵ A such that f(a) = b  
 
But 0 ≤1  a, for all a ϵ A implies   f(0)  ≤1  f(a) = b 
 
That is, f(0)  ≤1  b, for all b ϵ B 
 
Therefore, f (0) is the least element of B. 
 
Hence f (0) = 0’. 
 
Proposition 3.10.5: Let A and B be Upper Bounded Artex spaces over a bi-monoid M. If f: A → B is an Artex Space 
epimorphism of A onto B, then f (1) = 1’, where 1 and 1’ are the greatest elements of A and B respectively. 
 
Proof: Let A and B be Upper Bounded Artex spaces over a bi-monoid M  
 
Let f: A → B be an Artex homomorphism. 
 
Suppose 1 and 1’ are the greatest elements of A and B respectively. 
 
Since 1 is the greatest element of A, a ≤1 1, for all a ϵ A.   
 
Since 1’ is the greatest element of B, b ≤2 1’, for all b ϵ B.   
 
Since f is a homomorphism,  x  ≤1  y   =>   f(x)  ≤2  f(y),  a  ≤1  1, for all a ϵ A implies   f(a)  ≤2  f(1), for all a ϵ A. 
 
Therefore, f (1) is the greatest element of f(A) 
 
Since f: A → B is onto, f(A) = B. 
 
Therefore, f (1) is the greatest element of B. 
 
Hence f (1) = 1’. 
 
Proposition 3.10.6:  If B and B’ are any two Bounded Artex spaces over a bi-monoid M, then BXB’ is also a Bounded 
Artex Space over M. If ≤1 and ≤2 are the partial orderings on B and B’ respectively, then partial ordering ≤ on BXB’ 
and the bi-monoid multiplication in BXB’ are defined by the following:  
 
For x, y ϵ BXB’, where x = (a1,b1) and y = (a2,b2) ,  x  ≤ y  means a1  ≤1  a2 , and  b1  ≤2  b2 
 
For m ϵ M, m ǂ 0, and x ϵ BXB’, where x= (a, b), the bi-monoid  multiplication in BXB’ is defined by  
  
mx = m(a,b) = (ma,mb), where ma and mb are the bi-monoid multiplications in B and B’ respectively. 
 
In other words if Ʌ 1 and V1 are the cap, cup of B and Ʌ2 and V2 are the cap, cup of B’, then the cap, cup of BXB’ 
denoted by Ʌ and V are defined by x Ʌ y =  (a 1,b1) Ʌ (a2,b2) = (a1 Ʌ1a2 , b1 Ʌ2b2 ) and  x V y =  (a1,b1) V (a2,b2) = (a1 
V1a2 , b1 V2b2 ). 
 
Proof:  Let A = BXB’ 
 
We know that if (B,  ≤1 ) and ( B’, ≤2 ) are any two Artex spaces over a bi-monoid M, then BXB’ is an Artex space over 
M with the given partial ordering.  
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Therefore, it is enough to prove that A = BXB’ is a Lower Bounded Artex Space over M and an Upper Bounded Artex 
Space over M.  
 
(i) A = BXB’ is a Lower Bounded Artex space over M. 
 
Let x ϵ BXB’, where  x = (b, b’) 
 
Let 01and 02 be the least elements of B and B’ respectively  
 
Then    01 ≤1 b, for all b ϵ B  and  02  ≤2  b’ , for all b’ ϵ B’. 
 
Let  0 = (01, 02). 
 
Clearly 0 = (01, 02) ϵ BXB’. 
 
Now, since  01  ≤1   b  , for all b ϵ B  and  02   ≤2   b’ , for all b’ ϵ B’, (01, 02) ≤ (b,b’) , for all  (b, b’) ϵ BXB’. 
 
That is, 0 ≤ (b, b’), for all (b, b’) ϵ BXB’. 
 
That is, 0 ≤ x = (b, b’), for all x = (b, b’) ϵ BXB’ 
 
Therefore, 0 is the least element of BXB’. 
 
Therefore, A = BXB’ is a Lower Bounded Artex space over M. 
 
(ii) A = BXB’ is an Upper Bounded Artex space over M. 
 
Let 11 and 12 be the greatest elements of B and B’ respectively. 
 
Let 1 = (11, 12). 
 
Clearly 1 = (11, 12) ϵ BXB’. 
 
Now, since b ≤1 11 , for all b ϵ B  and b’ ≤2 12 , for all b’ ϵ B’, (b, b’)  ≤ (11, 12)  , for all (b, b’) ϵ BXB’. 
 
That is, x = (b, b’) ≤ 1 , for all x = (b, b’) ϵ BXB’. 
 
Therefore, 1 = (11, 12) is the greatest element of BXB’. 
 
A = BXB’ is an Upper Bounded Artex space over M. 
 
Hence A = BXB’ is a Bounded Artex space over M. 
 
Corollary 3.10.7: If B1, B2, B3… Bn are Bounded Artex spaces over a bi-monoid M, then  B1 X B2 X B3 X …..X Bn is 
also a Bounded Artex space over M. 
 
Proof:  The proof is by induction on n 
 
When n=2, by the Proposition 3.10.6, B1 X B2 is a Bounded Artex space over M 
 
Assume that B1 X B2 X B3 X …..X Bn-1 is a Bounded Artex space over M 
 
Consider B1 X B2 X B3 X …..X Bn 
 
Let B= B1 X B2 X B3 X …..X Bn-1 
 
Then   B1 X B2 X B3 X …..X Bn = (B1 X B2 X B3 X …..X Bn-1) X Bn = B X Bn   
 
By assumption B is a Bounded Artex space over M 
 
Again by the theorem B X Bn is a Bounded Artex space over M 
 
Hence, B1 X B2  X B3 X …..X Bn is a Bounded Artex space over M 
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Corollary 3.10.8: If B1 and B2 are Lower Bounded Artex spaces over a bi-monoid M, then B1 X B2 is also a Lower 
Bounded Artex space over M. 
 
Proof: The proof is clear from the Proposition 3.10.6. 
 
Corollary 3.10.9: If B1, B2, B3… Bn  are Lower Bounded Artex spaces over a bi-monoid M, then B1 X B2 X B3 X …..X 
Bn is also a Lower Bounded Artex space over M. 
 
Proof: The proof is clear from the Corollary 3.10.8 and the Corollary 3.10.7. 
 
Corollary 3.10.10: If B1 and B2 are Upper Bounded Artex spaces over a bi-monoid M, then B1 X B2 is also an Upper 
Bounded Artex space over M. 
 
Proof: The proof is clear from the Proposition 3.10.6. 
 
Corollary 3.10.11: If B1, B2, B3... Bn are Upper Bounded Artex spaces over a bi-monoid M, then B1 X B2  X B3 X 
…..X Bn is also an Upper Bounded Artex space over M. 
 
Proof: The proof is clear from the Corollary 3.10.10 and the Corollary 3.10.7. 
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